Skip to main content

Advertisement

Log in

Caldelas and Gerês hydrothermal systems (NW Portugal): a comparative study based on geochemical and isotopic signatures

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

A study based on geochemical and environmental isotope data was performed in two low-temperature hydrothermal systems in NW Portugal (Caldelas and Gerês hydrothermal systems). This study aims to demonstrate the role of integrated hydrogeological tools for developing conceptual models of groundwater circulation. The studied hydrothermal systems are ascribed to groundwater circulation in fractured calc-alkaline/alkaline granitic contexts, responsible for different groundwater geochemical types. Caldelas hydrothermal system is dominated by Ca/Na-HCO3 waters, while at Gerês, the hydrothermal system is characterized by Na-HCO3-type waters. The isotopic signatures indicate that the preferential recharge areas are located at very different altitudes (Caldelas around 171 m a.s.l. and Gerês between 912 and 1118 m a.s.l.). The thermomineral waters issue with a mean temperature of 27 °C (Caldelas) and 43 °C (Gerês). Several geothermometers were used to estimate the reservoir temperature and the corresponding depth reached by the hydrothermal systems. At Caldelas, the mean estimated reservoir temperature was 42 ± 6 °C, using only the chalcedony and K2/Mg geothermometers, which suggests depths around 0.93 km. In the Gerês thermal area, the chalcedony, K2/Mg, and Na/K/Ca (β = 4/3) geothermometers gave a mean estimated reservoir temperature of 96 ± 5 °C, suggesting depths close to 2.8 km. In both case studies, conceptual circulation models are proposed, based on: geological heterogeneities, geochemical and isotopic signatures, mean preferential recharge altitudes, groundwater circulation paths, and mean residence time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(adapted from Pedrosa 1999)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Albu M, Banks D, Nash H (1997) Mineral and thermal groundwater resources. Chapman and Hall, London

    Book  Google Scholar 

  • Almeida Soares MAM (2019) Estudo gravimétrico em contexto granítico no Concelho de Amares. MSc thesis, Faculdade de Ciências da Universidade do Porto

  • Araguás-Araguás L, Froehlich K, Rozanski K (2000) Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol Process 14:1341–1355

    Article  Google Scholar 

  • Arnorsson S, Gunnlaugsson E, Svavarsson H (1983) The chemistry of geothermal waters in Iceland. III. Chemical geothermometry in geothermal investigations. Geochim Cosmochim Acta 47(3):567–577. https://doi.org/10.1016/0016-7037(83)90278-8

    Article  Google Scholar 

  • Arnórsson S, D’Amore F, Gerardo J (2000) Isotopic and chemical techniques in geothermal exploration. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Ayenew T, Kebede S, Alemyahu T (2008) Environmental isotopes and hydrochemical study applied to surface water and groundwater interaction in the Awash River basin. Hydrol Process 22:1548–1563. https://doi.org/10.1002/hyp.6716

    Article  Google Scholar 

  • Azañón JM, Cabral J (2020) Active processes in Iberia: an introduction. In: Quesada C, Oliveira JT (eds) The geology of Iberia: a geodynamic approach, vol 5. Springer Nature, Cham, pp 1–3. https://doi.org/10.1007/978-3-030-10931-8_1

  • Baalousha H (2008) Fundamentals of groundwater modelling. In: Konig LF, Weiss JL (eds) Groundwater: modelling, management and contamination. Nova Science Publishers, New York, pp 113–130

    Google Scholar 

  • Bowers TS, Jackson KJ, Helgeson HC (1984) Equilibrium activity diagrams. Springer, Berlin

    Book  Google Scholar 

  • Bowser CJ, Jones BF (2002) Mineralogic controls on the composition of natural waters dominated by silicate hydrolysis. Am J Sci 302:582–662

    Article  Google Scholar 

  • Carreira PM, Valério P, Nunes D, Araújo MF (2005) Temporal and seasonal variation of stable isotopes and tritium in precipitation over Portugal. In: Proceedings of the International Conference Isotopes in Environmental Studies, Aquatic Forum 2004. IAEA, Vienna, 370–373

  • Carreira PM, Marques JM, Graça R, Aires-Barros L (2008) Radiocarbon application in dating “complex” hot and cold CO2—rich mineral water systems: a review of case studies ascribed to the Northern Portugal. Appl Geochem 23:2817–2828. https://doi.org/10.1016/j.apgeochem.2008.04.004

    Article  Google Scholar 

  • Carreira PM, Nunes D, Valerio P, Araujo MF (2009) A 15-year record of seasonal variation in the isotopic composition of precipitation water over continental Portugal. J Radioanal Nucl Chem 281:153–156. https://doi.org/10.1007/s10967-009-0064-0

    Article  Google Scholar 

  • Carreira PM, Marques JM, Carvalho MR, Capasso G, Grassa F (2010) Mantle-derived carbon in hercynian granites. Stable isotope signatures and C/He associations in the thermomineral waters, N-Portugal. J Volcanol Geotherm Res 189:49–56. https://doi.org/10.1016/j.jvolgeores.2009.10.008

    Article  Google Scholar 

  • Carreira PM, Marques JM, Espinha Marques J, Chaminé HI, Fonseca PE, Monteiro Santos F, Moura RM, Carvalho JM (2011) Defining the dynamics of groundwater in Serra da Estrela Mountain area, central Portugal: an isotopic and hydrogeochemical approach. Hydrogeol J 19(1):117–131. https://doi.org/10.1007/s10040-010-0675-0

    Article  Google Scholar 

  • Carreira PM, Marques JM, Carvalho MR, Nunes D, Antunes da Silva M (2014) Carbon isotopes and geochemical processes in CO2-rich cold mineral water, N-Portugal. Environ Earth Sci 71:2941–2953. https://doi.org/10.1007/s12665-013-2671-x

    Article  Google Scholar 

  • Carvalho JM, Chaminé HI, Afonso MJ, Espinha Marques J, Medeiros A, Garcia S, Gomes A, Teixeira J, Fonseca PE (2005) Productivity and water costs in fissured-aquifers from the Iberian crystalline basement (Portugal): hydrogeological constraints. In: López-Geta JA, Pulido-Bosch A, Baquero-Úbeda JC (eds) Water, mining and environment. Book Homage to Professor Rafael Fernández Rubio. Instituto Geológico y Minero de España, Madrid, pp 193–207

    Google Scholar 

  • Celle-Jeanton H, Travi Y, Blavoux B (2001) Isotopic typology of the precipitation in the Western Mediterranean region at three different time scales. Geophys Res Lett 28(7):1215–1218. https://doi.org/10.1029/2000GL012407

    Article  Google Scholar 

  • Chae G-T, Yun S-T, Kim K, Mayer B (2006) Hydrogeochemistry of sodium bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: water–rock interaction and hydrologic mixing. J Hydrol 321:326–343. https://doi.org/10.1016/j.hydrol.2005.08.006

    Article  Google Scholar 

  • Chaminé HI, Carvalho JM, Teixeira J, Freitas L (2015) Role of hydrogeological mapping in groundwater practice: back to basics. Eur Geol J 40:34–42

    Google Scholar 

  • Cho B-W, Choo CO, Kim MS, Hwang J, Yun U, Lee S (2015) Spatial relationships between radon and topographical, geological, and geochemical factors and their relevance in all of South Korea. Environ Earth Sci 74:5155–5168. https://doi.org/10.1007/s12665-015-4526-0

    Article  Google Scholar 

  • Coudé-Gaussen G (1981) Les Serra da Peneda et do Gerês: étude géomorphologique. Memór Centro Estudos Geogr Lisboa 5:1–254

    Google Scholar 

  • Craig H (1961) Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133:1833–1834

    Article  Google Scholar 

  • Cunha PP, Vicente G, Martín-González F (2019) Cenozoic sedimentation along the piedmonts of thrust related basement ranges and strike-slip deformation belts of the Iberian Variscan Massif. In: Quesada C, Oliveira JT (eds) The geology of Iberia: a geodynamic approach, vol 4. Springer Nature, Cham, pp 1–3. https://doi.org/10.1007/978-3-030-11190-8_5

  • Custódio E, Llamas MR (1983) Hidrología subterránea. Ed. Omega, Tomo 1, 2ª edição. Barcelona, Spain (in Spanish)

  • D’Amore F, Fancelli R, Caboi R (1987) Observations on the application of chemical geothermometers to some hydrothermal systems in Sardinia. Geothermics 16(3):271–282

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus XVI 4:436–468

    Google Scholar 

  • Darling WG, Bath AH, Talbot JC (2003) The O and H stable isotopic composition of fresh waters in the British Isles. 2. Surface waters and groundwater. Hydrol Earth Syst Sci 7:163–181. https://doi.org/10.5194/hess-7-163-2003

    Article  Google Scholar 

  • Diamond RE, Harris C (2000) Oxygen and hydrogen isotope geochemistry of thermal springs of the Western Cape, South Africa: recharge at high altitude? J Afr Earth Sci 31(3–4):467–481. https://doi.org/10.1016/S0899-5362(00)80002-0

    Article  Google Scholar 

  • Dias G, Noronha F, Almeida a, Simões PP, Martins HCB, Ferreira N (2010) Geocronologia e petrogénese do plutonismo tardi-Varisco (NW de Portugal): síntese e inferências sobre os processos de acreção e reciclagem crustal na Zona Centro-Ibérica. Ciências Geológicas—Ensino e Investigação e sua História Vol 1 Cap II Petrologia e Geoquímica. pp 143–160 (in Portuguese)

  • Epstein S, Mayeda T (1953) Variation of 18O content of waters from natural sources. Geochim Cosmochim Acta 4:213–224

    Article  Google Scholar 

  • Ferreira N, Iglesias M, Noronha F, Pereira E, Ribeiro A, Ribeiro ML (1987) Granitóides da Zona Centro Ibérica e seu enquadramento geodinâmico. In: Bea F, Carnicero A, Gonzalo JC, López-Plaza M, Rodríguez-Alonso MD (eds) Geologia de los Granitoides y Rocas Asociadas del Macizo Hespérico. Ediciones Rueda, Madrid, pp 37–51

    Google Scholar 

  • Fouillac C, Michard G (1981) Sodium/lithium ratio in water applied to geothermometry of geothermal reservoir. Geothermics 10(1):55–70. https://doi.org/10.1016/0375-6505(81)90025-0

    Article  Google Scholar 

  • Fournier RO, Truesdell AH (1973) An empirical Na–K–Ca geothermometer for natural waters. Geochim Cosmochim Acta 37(5):1255–1275. https://doi.org/10.1016/0016-7037(73)90060-4

    Article  Google Scholar 

  • Friedman I (1953) Deuterium content of natural waters and other substances. Geochim Cosmochim Acta 4:89–103

    Article  Google Scholar 

  • Galego Fernandes P, Carreira PM (2008) Isotopic evidence of aquifer recharge during the last ice age in Portugal. J Hydrol 361:291–308. https://doi.org/10.1016/j.jhydrol.2008.07.046

    Article  Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na–K–Ca–Mg geoindicators. Geochim Cosmochim Acta 52(12):2749–2765. https://doi.org/10.1016/0016-7037(88)90143-3

    Article  Google Scholar 

  • Giggenbach W, Gonfiantini R, Jangi BL, Truesdell AH (1983) Isotopic and chemical composition of the Parbati Valley geothermal discharges, North-West Himalaya, India. Geothermics 12:199–222. https://doi.org/10.1016/0375-6505(83)90030-5

    Article  Google Scholar 

  • Giustini F, Brilli M, Patera A (2016) Mapping oxygen stable isotopes of precipitation in Italy. J Hydrol Reg Stud 8:162–181. https://doi.org/10.1016/j.ejrh.2016.04.001

    Article  Google Scholar 

  • Glok Galli M, Damons ME, Siwawa S, Bocanegra EM, Nel JM, Mazvimavi D, Martínez DE (2017) Stable isotope hydrology in fractured and detritic aquifers at both sides of the South Atlantic Ocean: Mar del Plata (Argentina) and the Rawsonville and Sandspruit river catchment areas (South Africa). J S Am Earth Sci 73:119–129. https://doi.org/10.1016/j.jsames.2016.12.006

    Article  Google Scholar 

  • Gokgoz A, Tarcan G (2006) Mineral equilibria and geothermometry of the Dalaman–Koycegiz thermal springs, southern Turkey. Appl Geochem 21(2):253–268. https://doi.org/10.1016/j.apgeochem.2005.08.010

    Article  Google Scholar 

  • Gonfiantini R, Araguas LA, Rozanski K (1990) Tritium in precipitation: comparison between the years of high tritium (1963–1967) and recent years. Bull Radiat Prot 13(1):1

    Google Scholar 

  • Gonfiantini R, Roche MA, Olivry JC, Fontes J-C, Zuppi GM (2001) The altitude effect on the isotopic composition of tropical rains. Chem Geol 181:147–167

    Article  Google Scholar 

  • González-Trinidad J, Pacheco-Guerrero A, Júnez-Ferreira H, Bautista-Capetillo C, Hernández-Antonio A (2017) Identifying groundwater recharge sites through environmental stable isotopes in an alluvial aquifer. Water 9(8):569. https://doi.org/10.3390/w9080569

    Article  Google Scholar 

  • Gourcy LL, Groening M, Aggarwal PK (2005) Stable oxygen and hydrogen isotopes. In: Aggarwal PK, Gat JR, Froehlich KFO (eds) Isotopes in the water cycle. Past, present and future of a developing science. Springer, Amsterdam, pp 39–51

    Google Scholar 

  • IAEA (1976) Procedure and technique critique for tritium enrichment by electrolysis at IAEA laboratory. In: Technical Procedure no. 19. International Atomic Energy Agency. Vienna

  • IGM (1998) Recursos Geotérmicos em Portugal Continental: Baixa Entalpia. http://www.lneg.pt/CienciaParaTodos/edicoes_online/diversos/rec_geotermicos/texto

  • Jaques L, Noronha F, Liewig N, Bobos N (2016) Paleofluids circulation associated with the Gerês late-orogenic granitic massif, northern Portugal. Chem Erde 76(4):659–676

    Article  Google Scholar 

  • Kresik N, Mikszewski A (2013) Hydrogeological conceptual site models: data analysis and visualization. CRC Press, Boca Raton

    Google Scholar 

  • Lambs L, Moussa I, Brunet F (2013) Air masses origin and isotopic tracers: a study case of the oceanic and Mediterranean rainfall southwest of France. Water 5:617–628. https://doi.org/10.3390/w5020617

    Article  Google Scholar 

  • Li F, Zeng J (2017) Characterization of origin and evolution of formation water in buried hill of Jizhong depression, China, using multivariate statistical analysis of geochemical data. Geofluids. https://doi.org/10.1155/2017/5290686

    Article  Google Scholar 

  • Lima AS (2011) Modelo conceptual da ocorrência hidromineral do Gerês: fundamentos sobre a delimitação da área de recarga do sistema CIG-R Livros de Actas, pp 169–182 (in Portuguese)

  • Lima A, Oliveira ACV (2007) Conceptualização de modelos hidrogeológicos em águas sulfúreas. In: Chaminé HI, Carvalho JM (eds) O valor acrescentado das ciências da terra no termalismo e no engarrafamento da água (II Fórum Ibérico de Águas Engarrafadas e Termalismo). Instituto Superior de Engenharia do Porto, Porto, pp 141–160 ((in Portuguese))

    Google Scholar 

  • Liotta M, Grassa F, D’Alessandro W, Favara R, Gagliano Candela E, Pisciotta A, Scaletta C (2013) Isotopic composition of precipitation and groundwater in Sicily, Italy. Appl Geochem 34:199–206. https://doi.org/10.1016/j.apgeochem.2013.03.012

    Article  Google Scholar 

  • Lucas LL, Unterweger MP (2000) Comprehensive review and critical evaluation of the half-life of tritium. J Res Natl Inst Technol 105:541–549

    Article  Google Scholar 

  • Marques JM, Espinha Marques J, Carreira PM, Graça RC, Aires-Barros L, Carvalho JM, Chaminé HI, Borges FS (2003) Geothermal fluids circulation at Caldas do Moledo area, Northern Portugal: geochemical and isotopic signatures. Geofluids 3(3):189–201. https://doi.org/10.1046/j.1468-8123.2003.00059.x

    Article  Google Scholar 

  • Marques JM, Andrade M, Carreira PM, Eggenkamp HGM, Graça RC, Aires-Barros L, Antunes da Silva M (2006) Chemical and isotopic signatures of HCO3/Na/CO2-rich geofluids, North Portugal. Geofluids 6:273–287

    Article  Google Scholar 

  • Marques JM, Carreira PM, Espinha Marques J, Chaminé HI, Fonseca PE, Monteiro Santos FA, Eggenkamp HGM, Teixeira J (2010a) The role of geosciences in the assessment of low-temperature geothermal resources (N-Portugal): a review. Geosci J 14:329–446. https://doi.org/10.1007/s12303-010-0034-0

    Article  Google Scholar 

  • Marques JM, Matias MJ, Basto MJ, Carreira PM, Aires-Barros LA, Goff FE (2010b) Hydrothermal alteration of Hercynian granites, its significance to the evolution of geothermal systems in granitic rocks. Geothermics 39:152–160. https://doi.org/10.1016/j.geothermics.2010.03.002

    Article  Google Scholar 

  • Marques JM, Matos C, Carreira PM, Neves MO (2017) Isotopes and geochemistry to assess shallow/thermal groundwater interaction in a karst/fissured-porous environment (Portugal): a review and reinterpretation. Sustain Water Resour Manag. https://doi.org/10.1007/s40899-017-0207-3

    Article  Google Scholar 

  • May F (2005) Alteration of wall rocks by CO2-rich water ascending in fault zones: natural analogues for reactions induced by CO2 migrating along faults in siliciclastic reservoir and cap rocks. Oil Gas Sci Technol 60(1):19–32

    Article  Google Scholar 

  • Medeiros AC, Teixeira C, Lopes JT (1975) Carta Geológica de Portugal na escala 1:50000. Notícia Explicativa da Folha 5-B (Ponte da Barca). Direcção—Geral de Minas e Serviços Geológicos, Lisboa (in Portuguese)

  • Mendes AC (2001) Geocronologia e petrogénese do maciço granítico pós-tectónico de Peneda-Gerês (ZCI, Norte de Portugal e Galiza). PhD dissertation, Universidade do Minho, Braga (in Portuguese)

  • Mendes A, Dias G (1996) Petrology and geochemistry of late-Hercynian subalkaline plutonism in the Central Iberian Zone: the Peneda-Gerês granitic massif. C R Acad Sci Paris 323(IIa):665–672

    Google Scholar 

  • Mendes AC, Dias G (2004) Mantle-like Sr–Nd isotope composition of Fe–K subalkaline granites: the Peneda-Gerês Variscan massif (NW Iberian Peninsula). Terra Nova 16:109–115

    Article  Google Scholar 

  • Michard G (1990) Behaviour of major elements and some trace elements (Li, Rb, Cs, Sr, Fe, Mn, W, F) in deep hot waters from granitic areas. Chem Geol 89:117–134

    Article  Google Scholar 

  • Moore JE (2002) Field hydrogeology: a guide for site investigations and report preparation. Lewis Publishers, New York

    Google Scholar 

  • Moreira A, Simões M (1988) Carta Geológica de Portugal na escala 1:50,000. Notícia Explicativa da Folha 1-D (Arcos de Valdevez). Serviços Geológicos de Portugal (in Portuguese)

  • Moser H, Wolf M, Fritz P, Fontes J-C, Florkowski T, Payne B (1989) Deuterium, oxygen-18 and tritium in Stripa groundwater. Geochim Cosmochim Acta 5:1757–1763

    Article  Google Scholar 

  • Neiva AMR (1993) Geochemistry of granites and their minerals from Gerez mountain, northern Portugal. Chem Erde 53:227–258

    Google Scholar 

  • Pedrosa MY (1999) Notícia Explicativa da Carta Hidrogeológica de Portugal, escala 1:200000, Folha 1. Instituto Geológico e Mineiro, Lisboa ((in Portuguese))

    Google Scholar 

  • Ribeiro ML, Moreira A (1986) Carta Geológica de Portugal na escala 1:50 000. Notícia Explicativa da Folha 1-B (Monção). Serviços Geológicos de Portugal (in Portuguese)

  • Ribeiro A, Munhá J, Dias R, Mateus A, Pereira E, Ribeiro L, Fonseca PE, Araújo A, Oliveira JT, Romão J, Chaminé HI, Coke C, Pedro J (2007) Geodynamic evolution of the SW Europe Variscides. Tectonics. https://doi.org/10.1029/2006TC002058

    Article  Google Scholar 

  • Rozanski K, Sonntag C, Munnich KO (1982) Factors controlling stable isotope composition of European precipitation. Tellus 34:142–150

    Google Scholar 

  • Rozanski K, Araguás-Araguás L, Gonfiantini R (1992) Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate. Science 258:981–985

    Article  Google Scholar 

  • Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. Climate change in continental isotopic records. Wiley, New York, pp 1–36

    Google Scholar 

  • Schoeller H, Schoeller M (1979) Une etude des eaux thermominerales du Massif central francais. Bull Bureau Recherches Geol Mineres Sect III 2:121–156

    Google Scholar 

  • Sidle WC (1998) Environmental isotopes for resolution of hydrology problems. Environ Monit Assess 52:389–410

    Article  Google Scholar 

  • Sung K-Y, Yun S-T, Park M-E, Koh Y-K, Choi B-Y, Hutcheon I, Kim K-H (2012) Reaction path modeling of hydrogeochemical evolution of groundwater in granitic bedrocks, South Korea. J Geochem Explor 118:90–97. https://doi.org/10.1016/j.gexplo.2012.05.004

    Article  Google Scholar 

  • Truesdell AH (1975) Summary of Section III. Geochemical techniques in exploration. In: Proceedings of the second United Nations symposium on the development and use of geothermal resources San Francisco, California: Lawrence Berkley Laboratory, University of California, pp 53–79

  • Vidal-Romaní JR, Brum A, Zêzere J, Rodrigues L, Monge C (1990) Evolución cuaternaria del relieve granítico en la Serra de Gêrez-Xurés, (Minho, Portugal—Ourense, Galicia). Cuaternario Geomorfol 4:3–12

    Google Scholar 

  • Yurtsever Y, Gat JR (1981) Atmospheric waters. In: Gat JR, Gonfiantini R (eds) Stable isotope hydrology. Deuterium and oxygen-18 in the water cycle. Technical Reports Series No. 210. IAEA, Vienna STI/DOC/10/210. 103-142

Download references

Acknowledgements

C2TN|IST authors acknowledge the FCT (Portuguese Science and Technology Foundation) support through the FCT-UIDB/04349/2020 project; CERENA|IST recognize the FCT support through the strategic project FCT-UIDB/04028/2020. JEM is thankful to the funding provided by the Institute of Earth Sciences (ICT), under FCT contracts UID/GEO/04683/2019 and COMPETE POCI-01-0145-FEDER-007690. HIC was supported partially under the framework of the labcarga|ISEP re-equipment program (IPP-ISEP|PAD’2007/08) and Centre GeoBioTec|UA (UID/GEO/04035/2019). An early draft of this manuscript was critically read by two anonymous reviewers and the authors gratefully acknowledge their contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula M. Carreira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a part of the Topical Collection in Environmental Earth Sciences on “Mineral and Thermal Waters” guest edited by Drs. Adam Porowski, Nina Rman and Istvan Forizs, with James LaMoreaux as the Editor-in-Chief.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carreira, P.M., Marques, J.M., Guerra, A. et al. Caldelas and Gerês hydrothermal systems (NW Portugal): a comparative study based on geochemical and isotopic signatures. Environ Earth Sci 80, 100 (2021). https://doi.org/10.1007/s12665-021-09389-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09389-w

Keywords

Navigation