Skip to main content

Advertisement

Log in

Mapping hydrothermal alteration zone through aster data in Gadag Schist Belt of Western Dharwar Craton of Karnataka, India

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Alteration zones are developed in a wide range of geological milieus such as volcano-plutonic rocks. Hydrothermal alteration zones are considered an important guide for mineral exploration and can act as a potential zone of mineralization. The minerals in alteration zones have very diagnostic absorption features in visible–near infrared (VNIR) and shortwave infrared (SWIR) regions of the electromagnetic spectrum. The Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) data have the potential to identify mineral assemblages in different hydrothermal alteration zones because of its 14 spectral bands which cover a wide spectral range. In the present article, FCC, band ratio, and SPCA techniques were applied to map the hydrothermal alteration zones in Gadag Schist Belt (GSB) of Western Dharwar Craton (WDC) of Karnataka. FCC has highlighted lithology, alteration zones, and given a fair idea about the lithological control and alteration occurrences in the area. Band ratio technique for muscovite, kaolinite, chlorite, iron oxide gossan, and silica alteration have yielded promising results. SPCA analysis successfully mapped hydrothermal alteration and delineated phyllic, argillic, and propylitic zones in the area. These results were verified through the existing geological map and by geological fieldwork in the area and these results are satisfactory. The total area, altered by different alteration process, was also calculated. In the GSB, iron alteration zone, phyllic, argillic, propylitic, and silica alteration zones were effectively mapped with the help of ASTER data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from Lowell and Guilbert (1970)

Fig. 2
Fig. 3

adopted from GSI

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdelsalam MG, Stern RJ, Berhane WG (2000) Mapping gossans in arid regions with LANDSAT TM and SIR-C images, the Beddaho alteration zone in northern Eritrea. J Afr Earth Sci 30(4):903–916

    Google Scholar 

  • Abhary A, Hassani H (2016) Mapping hydrothermal mineral deposits using PCA and BR methods in Baft 1:100000 geological sheet, Iran. Int J Adv Eng Manag Sci (IJAEMS) 2(9):2454

    Google Scholar 

  • Abubakar AJ, Hashim M, Pour AB (2017) Hydrothermal alteration mapping using feature-oriented principal component selection (FPCS) method to ASTER Data: Wikki and Mawulgo Thermal Springs, Yankari Park, Nigeria, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W5.

  • Abuzied SM, Ibrahim SK, Kaiser MF, Seleem TA (2016) Application of remote sensing and spatial data integrations for mapping porphyry copper zones in Nuweiba Area. Egypt Int J Signal Process Syst 4(2):102–108. https://doi.org/10.12720/ijsps.4.2.102-108

    Article  Google Scholar 

  • Agus AJL (2011) Mapping white mica in Milled porphyry copper pebbles using hyperspectral imagery: An exploratory study. Thesis.

  • Ahmadfaraj M, Mirmohammadi M, Afzal P (2016) Application of fractal modeling and PCA method for hydrothermal alteration mapping in the Saveh area (Central Iran) based on ASTER multispectral data. Int J Min Geo-Eng 50(1):37–48

    Google Scholar 

  • Akbari Z, Rasa I, Mohajjel M, Adabi MH, Yarmohammadi A (2015) Hydrothermal alteration identification of Ahangaran deposit, West of Iran using ASTER spectral analysis. Int Geoinform Res Dev J 6(1):28–42

    Google Scholar 

  • Aleks K, Simon O (2004) Manual on ASTER mineral index processing. Published by Remote Sensing Applications, Geoscience Australia. https://www.ga.gov.au/webtemp/image_cache/GA7833.pdf. Accessed 01 Oct 2019

  • Amer R, Kusky T, Ghulam A (2010) Lithological mapping in the Central Eastern Desert of Egypt using ASTER data. J Afr Earth Sci 56:75–82

    Google Scholar 

  • Assiri A, Alsaleh A, Mousam H (2008) Exploration of hydrothermal alteration zones using ASTER imagery: a case study of Nuqrah Area, Saudi Arabia. Asian J Earth Sci 1:77–82. https://doi.org/10.3923/ajes.2008.77.82

    Article  Google Scholar 

  • Bedini E, Van Der Meer F, Van Ruitenbeek F (2009) Use of HyMap imaging spectrometer data to map mineralogy in the Rodalquilar caldera, southeast Spain. Int J Remote Sens 30(2):327–348

    Google Scholar 

  • Beeraiah MB, Kumar CGH (2010) Report on exploration for gold in Nagavi sector, Gadag schist belt, Gadag district, Karnataka (E-I SATGE). Geological Survey of India, Bangalore (unpublished progress report)

    Google Scholar 

  • Beeraiah MB, Sengupta S (1998) A report on the investigation for gold in Malasamudra north block, Gadag schist belt, Dharwar district, Karnataka. Geological Survey of India, Bangalore (unpublished progress report)

    Google Scholar 

  • Bhadra BK, Pathak S, Karunakar G, Sharma JR (2013) ASTER data analysis for mineral potential mapping around Sawar-Malpura area, Central Rajasthan. J Indian Soc Remote Sens 41(2):391–404

    Google Scholar 

  • Boloki M, Poormirzaee R (2009) Using ASTER image processing for hydrothermal alteration and key alteration minerals mapping in Siyahrud area. Iran Int J Geol 3(2):38–43

    Google Scholar 

  • Bustos E, Báez WA, Norini G, Chiodi AL, Groppelli G, Arnosio JM (2017) Using optical imagery data for lithological mapping of composite volcanoes in high arid Puna Plateau Tuzgle Volcano Case Study. Revista de la Asociación Geológica Argentina 74(3):357–372

    Google Scholar 

  • Chakrabarti D, Mallic TC, Pyne TK, Guha D (2006) A manual of the geology of India, Vol. I, Precambrian, part I- Southern part of the Peninsula, Special Pub. no. 77, 4th edn.

  • Crosta AP, Moore JM (1989) Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minas Gerais State Brazil: A prospecting case history in greenstone belt terrain. In Proceedings of the 9th Thematic Conference on Remote Sensing for Exploration Geology, Calgary, AB, Canada, pp. 1173–1187.

  • Crosta AP, De Souza Filho CR, Azevedo F, Brodie C (2003) Targeting key alteration minerals in epithermal deposit in Patagonia, Argentina, using ASTER imagery and principal component analysis. Int J Remote Sens 10:4233–4240

    Google Scholar 

  • Crósta AP, Filho CR (2003) Searching for gold with ASTER. Earth Obs Mag 12(5):38–41

    Google Scholar 

  • Cudahy T (2011) Satellite ASTER geoscience product notes Western Australia. WA ASTER geoscience product notes, Version 1, CSIRO Earth Science and Resource Engineering Australian Resources Research Centre (ARRC), pp. 1–23.

  • Cudahy T (2016) Mineral mapping for exploration: an Australian journey of evolving spectral sensing technologies and industry collaboration. Geosciences 6(52):1–48. https://doi.org/10.3390/geosciences6040052

    Article  Google Scholar 

  • Dalton JB, Bove DJ, Mladinich CS, Rockwell BW (2004) Identification of spectrally similar materials using the USGS Tetracorder algorithm: the calcite–epidote–chlorite problem. Remote Sens Environ 89:455–466

    Google Scholar 

  • Damian F (2003) The mineralogical characteristics and the zoning of the hydrothermal types alteration from Nistru ore deposit, Baia Mare metallogenetic district. Studia Universitatis Babes-Bolyai, Geologia, XLVIII 1:101–112

    Google Scholar 

  • Dhara M, Sengar VK, Shovan S, Chattoraj L, Bhattacharjee S (2017) Mapping of alteration zones in mineral rich belt of South-East Rajasthan using remote sensing techniques. World Acad Sci Eng Technol Int J Geol Environ Eng 11(2):154–158

    Google Scholar 

  • Elsaid M, Aboelkhair H, Dardier A, Hermas E, Minoru U (2014) Processing of multispectral ASTER data for mapping alteration minerals zones: As an aid for uranium exploration in Elmissikat-Eleridiya granites, Central Eastern Desert, Egypt. Open Geol J 8(1:M5):69–83

    Google Scholar 

  • Feizi F, Mansuri E (2012) Identification of alteration zones with using ASTER data in a part of Qom Province, Central Iran. J Basic Appl Sci Res 2(10):10173–10184

    Google Scholar 

  • Feizi F, Mansuri E (2013) Separation of alteration zones on ASTER data and integration with drainage geochemical maps in Soltanieh, Northern Iran. Open J Geol 3:134–142. https://doi.org/10.4236/ojg.2013.32017

    Article  Google Scholar 

  • Gibson PJ, Power CH (2000) Introductory remote sensing digital image processing and applications. Taylor & Francis Inc., Oxfordshire, pp 58–63

    Google Scholar 

  • Hashim M, Pournamdary M, Pour AB (2011) Processing and interpretation of Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) data for lithological mapping in ophiolite complex. Int J Phys Sci 6(28):6410–6421

    Google Scholar 

  • Honarmand M, Ranjbar H, Shahabpour J (2011) Application of spectral analysis in mapping hydrothermal alteration of the Northwestern part of the Kerman Cenozoic Magmatic Arc Iran, University of Tehran. J Sci Islam Repub Iran 22(3):221–238

    Google Scholar 

  • Honarmand M, Ranjbar H, Shahabpour J (2012) Application of principal component analysis and spectral angle mapper in the mapping of hydrothermal alteration in the Jebal-Barez Area. Southeast Iran Res Geol 62(2):119–139. https://doi.org/10.1111/j.1751-3928.2012.00184.x

    Article  Google Scholar 

  • Hunt GR (1979) Near infrared (1.3–2.4 µm) spectra of alteration minerals potential for use in remote sensing. Geophysics 44:1974–1986

    Google Scholar 

  • Hunt GR, Salisbury JW (1971) Visible and near infrared spectra of minerals and rocks: II. Carbonat Mod Geol 2:23–30

    Google Scholar 

  • Jensen JR (1996) Introductory digital image processing: a remote sensing perspective, 2nd edn. Englewood Cliffs, New Jersey

    Google Scholar 

  • Khidir SOE, Babikir IAA (2013) Digital image processing and geospatial analysis of LANDSAT 7 ETM+ for mineral exploration, Abidiya area, North Sudan. Int J Geomat Geosci 3(3):645–658

    Google Scholar 

  • Kruse FA (2003) Mineral mapping with AVIRIS and EO-1 Hyperion. Presented at the 12th JPL Airborne Geoscience Workshop, Pasadena, California, pp. 24–28.

  • Kruse FA, Bordman JW, Huntington JF (2003) Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans Geosci Remote Sens 41(6):1388–1400

    Google Scholar 

  • Lagat J (2009) Hydrothermal Alteration mineralogy in geothermal fields with case examples from Olkaria domes geothermal field, Kenya. Presented at short course IV on exploration for geothermal resources, organized by UNU-GTP, Kengen and GDC at Lake Naivasha, Kenya. pp. 1–22.

  • Liu F, Wu X, Sun H, Guo Y (2007) Alteration information extraction by applying synthesis processing techniques to Landsat ETM+ data, case study of Zhaoyuan Gold Mines, Shandong Province, China. J China Univ Geosci 18:72–76

    Google Scholar 

  • Loughlin W (1991) Principal component analysis for alteration mapping. Photogramm Eng Remote Sens 57(9):1163–1169

    Google Scholar 

  • Lowell JD, Guilbert JM (1970) Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Econ Geol 65(4):373–408. https://doi.org/10.2113/gsecongeo.65.4.373

    Article  Google Scholar 

  • Mars JC, Rowan LC (2006) Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Space-borne Thermal Emission and Refl ection Radiometer (ASTER) data and logical operator algorithms. Geosphere 2(3):161–186. https://doi.org/10.1130/GES00044.1

    Article  Google Scholar 

  • Mohamed A, Ibrahim O, Kamal El Din G (2017) Lithologic mapping using remote-sensing data in Abu Marawat Area Eastern Desert of Egypt. Int J Adv Remote Sens 6(1):2171–2177

    Google Scholar 

  • Narayanaswamy S, Ahmed M (1963) Geology of Gadag gold field, Dharwar district, Mysore state. J Geol Survey India Memoir 1:107–116

    Google Scholar 

  • Noori L, Pour AB, Askari G, Taghipour N, Pradhan B, Lee CW, Honarmand M (2019) Comparison of different algorithms to map hydrothermal alteration zones using ASTER remote sensing data for polymetallic vein-type ore exploration: Toroud-Chahshirin Magmatic Belt (TCMB), North Iran. Remote Sens 11:1–24. https://doi.org/10.3390/rs11050495

    Article  Google Scholar 

  • Nouri R, Jafari MR, Arain M, Feizi F (2012) Hydrothermal alteration zones identification based on remote sensing data in the Mahin area, West of Qazvin Province Iran. Int J Environ Chem Ecol Geol Geophys Eng 6(7):382–385

    Google Scholar 

  • Ozdemir A, Sahinoglu A (2018) Important of gossans in mineral exploration: a case study in Northern Turkey. Int J Earth Sci Geophys 4(019):2–20. https://doi.org/10.35840/2631-5033/1819

    Article  Google Scholar 

  • Pirajno F (1992) Hydrothermal mineral deposits. Principles and fundamental concepts for the exploration geologists. Springer-Verlag Berlin Heidelberg

  • Pirajno F (2009) Hydrothermal processes and wall rock alteration. In: Pirajno F (ed) Hydrothermal Processes and Mineral Systems, pp 73–164. https://doi.org/10.1007/978-1-4020-8613-7

  • Pour AB, Hashim M (2011a) Application of advanced spaceborne thermal emission and reflection radiometer (ASTER) data in geological mapping. Int J Phys Sci 6(33):7657–7668

    Google Scholar 

  • Pour AB, Hashim M (2011b) Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. J Asian Earth Sci 42:1309–1323

    Google Scholar 

  • Pour AB, Hashim M (2012) The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geol Rev 44:1–9

    Google Scholar 

  • Pour AB, Hashim M, Marghany M (2011) Using spectral mapping techniques on short wave infrared bands of ASTER remote sensing data for alteration mineral mapping in SE Iran. Int J Phys Sci 6(4):917–929

    Google Scholar 

  • Prakash HSM, Nagar RP, Maruthi M, Reddy K Mahender (2014) Geology and mineral resources of Karnataka and Goa. Geological Survey of India. Miscellaneous publication (Misc. Pub.) 30, part – VII, 3rd revised edition.

  • Radhakrishna BP, Curtis LC (1999) Gold in India. Journal Geological Society of India, Bangalore, pp 57–78

    Google Scholar 

  • Ramadan T, Kontny A (2004) Mineralogical and structural characterization of alteration zones detected by orbital remote sensing at Shalatein District, SE Desert. Egypt J Afr Earth Sci 40:89–99

    Google Scholar 

  • Ramadan TM, Abdelsalam MG, Stern RJ (2001) Mapping gold bearing massive sulfide deposits in the Neoproterozoic Allaqi Suture, Southeast Egypt with Landsat TM and SIR-C/X SAR images. Photogram Eng Remote Sens 67(4):491–497

    Google Scholar 

  • Ramakrishnan M, Vaidyanadhan R (2010) Geology of India, vol 1. Journal Geological Society of India, Bangalore

    Google Scholar 

  • Rani N, Mandla VR, Singh T (2016a) Spatial distribution of altered minerals in the Gadag Schist Belt (GSB) of Karnataka, Southern India using hyperspectral remote sensing data. Geocarto Int. https://doi.org/10.1080/10106049.2015.1132484

    Article  Google Scholar 

  • Rani N, Mandla VR, Singh T (2016b) Performance of image classification on hyperspectral imagery for lithological mapping. J Geol Soc India 88:1–09

    Google Scholar 

  • Richards JA (1999) Remote sensing digital image analysis: an introduction. Springer-Verlag, Berlin, Germany, p 240

    Google Scholar 

  • Taro Y (2014) ASTER data analysis applied to mineral resource exploration and geological mapping. A dissertation for the degree of Doctor of Science Department of Earth and Environmental Sciences, Graduate School of Environmental Studies, Nagoya University.

  • Testa FJ, Villanueva C, Cooke DR, Zhang L (2018) Lithological and hydrothermal alteration mapping of epithermal, porphyry and tourmaline breccia districts in the Argentine Andes using ASTER Imagery. Remote Sens 10(203):1–45. https://doi.org/10.3390/rs10020203

    Article  Google Scholar 

  • Tommaso ID, Rubinstein N (2007) Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geol Rev 32:275–290

    Google Scholar 

  • Vasudev VN (2009) Field guide to selected gold prospects in Karnataka and Andhra Pradesh. Geological Society of India, Bengalore, pp 1–56

    Google Scholar 

  • Waldhoff G, Bubenzer O, Bolten A, Koppe W, Bareth G (2008) Spectral analysis of ASTER, Hyperion, and Quickbird data for geomorphological and geological research in Egypt (Dakhla Asis, Western Desert). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVII. Part B8, Bejing, pp. 1201–1206.

  • Yamaguchi Y, Naito C (2003) Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands. Int J Remote Sens 24:4311–4323

    Google Scholar 

  • Zadeh MH, Tangestani MH, Roldan FV, Yusta I (2014) Mineral exploration and alteration zone mapping using Mixture Tuned Matched Filtering approach on ASTER data at the Central Part of Dehaj-Sarduiyeh Copper Belt, SE Iran. IEEE J Select Topics Appl Earth Observ Remote Sens 7(1):284–287. https://doi.org/10.1109/JSTARS.2013.2261800

    Article  Google Scholar 

  • Zhang X, Pamer M, Duke N (2007) Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California). ISPRS J Photogramm Remote Sens 62:271–282

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Ravibabu Mandla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, N., Singh, T. & Mandla, V.R. Mapping hydrothermal alteration zone through aster data in Gadag Schist Belt of Western Dharwar Craton of Karnataka, India. Environ Earth Sci 79, 526 (2020). https://doi.org/10.1007/s12665-020-09269-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-020-09269-9

Keywords

Navigation