Skip to main content
Log in

Influence of geochemical properties on natural radionuclides in the sediment of Asia’s largest brackish water lagoon, Chilika-East Coast of India: evaluation through geo-statistical applications

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The study signifies the first work on natural radioactivity and to identify the associations as well as influence of geochemical properties on it. The determination of the natural radioactivity such as: 226Ra, 232Th, and 40K were carried out by gamma spectrometer and the median activities were found to be 26.27, 81.61, and 620.09 Bq kg−1, respectively. The geochemical parameters are pH, sand, silt, clay, organic carbon (OC), calcium carbonate (CaCO3), magnesium (Mg), potassium (K), calcium (Ca), sodium (Na), iron (Fe), phosphorus (P) and nitrogen (N) has been determined. The lagoon was mostly dominated by muddy-type sediment which is nearly 60% of the total sample and the high pH noticed in the NS (7.58) of Chilika, which is due to the presence of grass and weeds, by their photosynthesis process, which may cause the lake slighter alkaline. The high Fe concentration (2.53%) in the NS may be due to rapid relies of iron, whereas the enrichment of Ca in CS (1.02%) in the sediment may be from land runoff. The influence and relations between geochemical and natural radionuclides of the sediment were evaluated through geo-statistics, such as correlation matrices, factor analysis, and cluster analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmed NK, Abbady A, El Arabi AM et al (2006) Comparative study of the natural radioactivity of some selected rocks from Egypt and Germany. Ind J Pure Appl Phys 44(3):209–215. http://hdl.handle.net/123456789/8286

  • Al-Jundi J (2002) Population doses from terrestrial gamma exposure in areas near to old phosphate mine, Russaifa, Jordan. Radiat Meas 35:23–28. https://doi.org/10.1016/S1350-4487(01)00261-X

    Article  Google Scholar 

  • Al-Masri MS, Amin Y, Hassan M, Ibrahim S (2006) External gamma-radiation dose to Syrian population based on the measurement of gamma-emitters in soils. J Radioanal Nucl Chem 267:337–343. https://doi.org/10.1007/s10967-006-0052-6

    Article  Google Scholar 

  • Asa SC, Rath P, Panda UC et al (2013) Application of sequential leaching, risk indices and multivariate statistics to evaluate heavy metal contamination of estuarine sediments: Dhamara Estuary, East Coast of India. Environ Monit Assess. https://doi.org/10.1007/s10661-013-3060-3

    Article  Google Scholar 

  • Asa SC, Bramha SN, Mohanty AK et al (2015) Dynamics and quantification of dissolved metals in a highly contaminated river-estuarine system. Ind J Geo-Mar Sci 44(09):1310–1322. http://nopr.niscair.res.in/jspui/handle/123456789/34916

  • Bahari I, Mohsen N, Abdullah P (2007) Radioactivity and radiological risk associated with effluent sediment containing technologically enhanced naturally occurring radioactive materials in amang (tin tailings) processing industry. J Environ Radioact 95:161–170. https://doi.org/10.1016/j.jenvrad.2007.02.009

    Article  Google Scholar 

  • Banerjee S, Pramanik A, Sengupta S et al (2017) Distribution and source identification of heavy metal concentration in Chilika Lake, Odisha India: an assessment over salinity gradient. Curr Sci. https://doi.org/10.18520/cs/v112/i01/87-94

    Article  Google Scholar 

  • Barik SK, Bramha SN, Mohanty AK et al (2016) Sequential extraction of different forms of phosphorus in the surface sediments of Chilika Lake. Arab J Geosci 9:135. https://doi.org/10.1007/s12517-015-2217-5

    Article  Google Scholar 

  • Barik SK, Muduli PR, Mohanty B et al (2017) Spatio-temporal variability and the impact of Phailin on water quality of Chilika lagoon. Cont Shelf Res. https://doi.org/10.1016/j.csr.2017.01.019

    Article  Google Scholar 

  • Barik SK, Muduli PR, Mohanty B et al (2018) Spatial distribution and potential biological risk of some metals in relation to granulometric content in core sediments from Chilika Lake, India. Environ Sci Pollut Res 25:572–587. https://doi.org/10.1007/s11356-017-0421-4

    Article  Google Scholar 

  • Belivermis M, Kiliç Ö, Çotuk Y, Topcuoǧlu S (2010) The effects of physicochemical properties on gamma emitting natural radionuclide levels in the soil profile of Istanbul. Environ Monit Assess 163:15–26. https://doi.org/10.1007/s10661-009-0812-1

    Article  Google Scholar 

  • Borole DV, Krishnaswami S, Somayajulu BLK (1982) Uranium isotopes in rivers, estuaries and adjacent coastal sediments of western India: their weathering, transport and oceanic budget. Geochim Cosmochim Acta 46:125–137

    Article  Google Scholar 

  • Bramha S, Panda UC, Bhatta K, Sahu BK (2008) Spatial variation in hydrological characteristics of Chilika—a coastal lagoon of India. Indian J Sci Technol 1:1–7. https://doi.org/10.17485/ijst/2008/v1i4/29235

    Article  Google Scholar 

  • Bramha SN, Mohanty AK, Satpathy KK et al (2014) Heavy metal content in the beach sediment with respect to contamination levels and sediment quality guidelines: a study at Kalpakkam coast, southeast coast of India. Environ Earth Sci 72:4463–4472. https://doi.org/10.1007/s12665-014-3346-y

    Article  Google Scholar 

  • Bramha SN, Krishnan H, Subramanian V et al (2018) Baseline evaluation study of naturally occurring radionuclides in soil samples from vicinity of India’s first fast reactor fuel cycle facility (FRFCF), DAE complex, Kalpakkam, India. Radiat Prot Dosim 1:1. https://doi.org/10.1093/rpd/ncy262

    Article  Google Scholar 

  • Bramha S, Sahoo SK, Subramanian V et al (2019) Application of multivariate technique to evaluate spatial distribution of natural radionuclides along Tamil Nadu coastline, east coast of India. SN Appl Sci 1:689. https://doi.org/10.1007/s42452-019-0716-9

    Article  Google Scholar 

  • Brodnjak-Vončina D, Dobčnik D, Novič M, Zupan J (2002) Chemometrics characterisation of the quality of river water. Anal Chim Acta 462:87–100. https://doi.org/10.1016/S0003-2670(02)00298-2

    Article  Google Scholar 

  • Chandrasekaran A, Ravisankar R, Senthilkumar G et al (2014) Spatial distribution and lifetime cancer risk due to gamma radioactivity in Yelagiri hills. Egypt J Basic Appl Sci, Tamilnadu. https://doi.org/10.1016/j.ejbas.2014.02.001

    Book  Google Scholar 

  • Chandrasekaran A, Rajalakshmi A, Ravisankar R et al (2015a) Measurements of natural gamma radiations and effects of physico-chemical properties in soils of Yelagiri hills, Tamilnadu India with statistical approach. Procedia Earth Planet Sci 11:531–538. https://doi.org/10.1016/j.proeps.2015.06.055

    Article  Google Scholar 

  • Chandrasekaran A, Ravisankar R, Rajalakshmi A et al (2015b) Assessment of natural radioactivity and function of minerals in soils of Yelagiri hills, Tamilnadu, India by Gamma Ray spectroscopic and Fourier Transform Infrared (FTIR) techniques with statistical approach. Spectrochim Acta Part A Mol Biomol Spectrosc. https://doi.org/10.1016/j.saa.2014.10.075

    Article  Google Scholar 

  • Dowdall M, O’Dea J (2002) 226Ra/238U disequilibrium in an upland organic soil exhibiting elevated natural radioactivity. J Environ Radioact 59:91–104. https://doi.org/10.1016/S0265-931X(01)00038-8

    Article  Google Scholar 

  • Einsele G (2013) Sedimentary basins: evolution, facies, and sediment budget. Springer Sci Bus Media. https://doi.org/10.1007/978-3-662-04029-4

    Article  Google Scholar 

  • Eisenbud M, Paschoa AS (1989) Environmental radioactivity. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 280:470–482. https://doi.org/10.1016/0168-9002(89)90953-4

    Article  Google Scholar 

  • Elejalde C, Herranz M, Romero F, Legarda F (1993) Influence of physical factors on radionuclides contents in soils from Biscay (Spain). Toxicol Environ Chem 39:183–192. https://doi.org/10.1080/02772249309357916

    Article  Google Scholar 

  • Emelyanov EM (2007) The geochemical and geoecological situation of the gotland basin in the baltic sea where chemical munition was dumped. Geologija 60:10–26

    Google Scholar 

  • Fujiyoshi R, Sawamura S (2004) Mesoscale variability of vertical profiles of environmental radionuclides (40 K, 226Ra, 210Pb and 137Cs) in temperate forest soils in Germany. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2003.08.007

    Article  Google Scholar 

  • Gireeshkumar TR, Deepulal PM, Chandramohanakumar N (2013) Distribution and sources of sedimentary organic matter in a tropical estuary, south west coast of India (Cochin estuary): a baseline study. Mar Pollut Bull 66:239–245

    Article  Google Scholar 

  • Guagliardi I, Cicchella D, De Rosa R (2012) A geostatistical approach to assess concentration and spatial distribution of heavy metals in urban soils. Water Air Soil Pollut 223:5983–5998. https://doi.org/10.1007/s11270-012-1333-z

    Article  Google Scholar 

  • Guagliardi I, Buttafuoco G, Apollaro C et al (2013) Using gamma-ray spectrometry and geostatistics for assessing geochemical behaviour of radioactive elements in the lese catchment (southern Italy). Int J Environ Res 7:645–658. https://doi.org/10.22059/ijer.2013.644

    Article  Google Scholar 

  • Gupta GVM, Sarma VVSS, Robin RS et al (2008) Influence of net ecosystem metabolism in transferring riverine organic carbon to atmospheric CO2 in a tropical coastal lagoon (Chilka Lake, India). Biogeochemistry. https://doi.org/10.1007/s10533-008-9183-x

    Article  Google Scholar 

  • Harikrishnan N, Ravisankar R, Chandrasekaran A et al (2018) Assessment of gamma radiation and associated radiation hazards in coastal sediments of south east coast of Tamilnadu, India with statistical approach. Ecotoxicol Environ Saf 162:521–528. https://doi.org/10.1016/j.ecoenv.2018.06.097

    Article  Google Scholar 

  • Helena B (2000) Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res 34:807–816. https://doi.org/10.1016/S0043-1354(99)00225-0

    Article  Google Scholar 

  • Hippler D, Kozdon R, Darling KF et al (2009) Calcium isotopic composition of high-latitude proxy carrier Neogloboquadrina pachyderma (sin.). Biogeosciences (BG) 6:1–14

    Article  Google Scholar 

  • IAEA (1989) A guidebook, measurement of radionuclides in food and the environment. International Atomic Energy Agency IAEA, Vienna, Austria. http://www-pub.iaea.org/MTCD/Publications/PDF/trs295web.pdf

  • International Atomic Energy Agency (IAEA) (2010) Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. IAEA, Austria (Technical Reports Series, 472)

  • IS 2720 (Part 26) (1987) Methods of test for soils: determination of pH value (Second revision). Bureau of Indian Standards, New Delhi

  • Isinkaye MO, Emelue HU (2015) Natural radioactivity measurements and evaluation of radiological hazards in sediment of Oguta Lake, South East Nigeria. J Radiat Res Appl Sci 8:459–469. https://doi.org/10.1016/j.jrras.2015.05.001

    Article  Google Scholar 

  • Iurian A-R, Phaneuf MO, Mabit L (2015) Mobility and Bioavailability of Radionuclides in Soils. Radionuclides in the Environment. Springer International Publishing, Cham, pp 37–59

    Chapter  Google Scholar 

  • Ivanov YA, Lewyckyj N, Levchuk SE et al (1997) Migration of 137Cs and 90Sr from Chernobyl fallout in Ukrainian, Belarussian and Russian soils. J Environ Radioact 35:1–21

    Article  Google Scholar 

  • Jabbar T, Subhani MS, Khan K et al (2003) Natural and fallout radionuclide concentrations in the environment of Islamabad. J Radioanal Nucl Chem 258:143–149. https://doi.org/10.1023/A:1026226613371

    Article  Google Scholar 

  • Jayaraman G, Rao AD, Dube A, Mohanty PK (2005) Numerical simulation of circulation in the Chilika Lake. Aquat Ecosyst Conserv Restor, Manag, p 100

    Google Scholar 

  • Jibiri NN, Amakom CM, Adewuyi GO (2010) Radionuclide contents and physicochemical water quality indicators in stream, well and borehole water sources in high radiation area of Abeokuta, Southwestern Nigeria. J Water Resour Prot. https://doi.org/10.4236/jwarp.2010.24033

    Article  Google Scholar 

  • Karakelle B, Öztürk N, Köse A et al (2002) Natural radioactivity in soil samples of Kocaeli basin, Turkey. J Radioanal Nucl Chem 254:649–651. https://doi.org/10.1023/A:1021635415222

    Article  Google Scholar 

  • Krumbein WC, Pettijohn FJ (1938) Manual of sedimentary petrography. Appleton-Century-Crofts, New York

    Google Scholar 

  • Ligero R, Ramos-Lerate I, Barrera M, Casas-Ruiz M (2001) Relationships between sea-bed radionuclide activities and some sedimentological variables. J Environ Radioact 57:7–19. https://doi.org/10.1016/S0265-931X(00)00213-7

    Article  Google Scholar 

  • Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press on Demand, hardback, ix + 324 p £40. https://doi.org/10.1016/0025-3227(93)90121-B. ISBN 0-19-504977-2

    Article  Google Scholar 

  • Lu X, Wang L, Li LY et al (2010) Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J Hazard Mater 173:744–749

    Article  Google Scholar 

  • Massart DL, Vandeginste BGM, Buydens JMC et al (1998) Chapter 26 Other optimization methods. In: Data handling in science and technology. pp 771–804

  • McCartney M, Davidson C, Howe S, Keating G (2000) Temporal changes in the distribution of natural radionuclides along the Cumbrian coast following the reduction of discharges from a phosphoric acid production plant. J Environ Radioact 49:279–291. https://doi.org/10.1016/S0265-931X(99)00120-4

    Article  Google Scholar 

  • Mohanty PK, Panda US (2009) Circulation and mixing processes in Chilika lagoon. Indian J Mar Sci 38:205–214

    Google Scholar 

  • Mohanty AK, Bramha SN, Satpathy KK et al (2018) Geochemical distribution of forms of phosphorus in marine sediment of Bay of Bengal, southeast coast of India. Indian J Geo-Mar Sci 47(6):1132–1141

    Google Scholar 

  • Natesan U, Seshan B (2011) Vertical profile of heavy metal concentration in core sediments of Buckingham canal, Ennore

  • Nayak L, Behera DP (2004) Seasonal variation of some physicochemical parameters of the Chilika lagoon (east coast of India) after opening the new mouth, near Sipakuda. Indian J Mar Sci 33:206–208

    Google Scholar 

  • Nayak BK, Acharya BC, Panda UC et al (2004) Variation of water quality in Chilika lake, Orissa. Ind J Mar Sci 33:164–169

    Google Scholar 

  • Nazneen S, Raju NJ (2017) Distribution and sources of carbon, nitrogen, phosphorus and biogenic silica in the sediments of Chilika lagoon. J Earth Syst Sci 126:13. https://doi.org/10.1007/s12040-016-0785-8

    Article  Google Scholar 

  • Nemati K, Bakar NKA, Abas MR, Sobhanzadeh E (2011) Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2011.05.039

    Article  Google Scholar 

  • Okedeyi AS, Gbadebo AM, Mustapha AO (2014) Effects of Physical and Chemical properties on natural radionuclides levels in soil of quarry sites in ogun state, Nigeria. J Appl Sci 14:691–696

    Article  Google Scholar 

  • Okoro HK, Fatoki OS (2012) A review of sequential extraction procedures for heavy metals speciation in soil and sediments. J Environ Anal Toxicol. https://doi.org/10.4172/scientificreports.181

    Article  Google Scholar 

  • Panda D, Subramanian V, Panigrahy RC (1995) Geochemical fractionation of heavy metals in Chilka Lake (east coast of India)? A tropical coastal lagoon. Environ Geol 26:199–210. https://doi.org/10.1007/BF00770470

    Article  Google Scholar 

  • Panda UC, Rath P, Sahu KC et al (2006) Study of geochemical association of some trace metals in the sediments of Chilika Lake: a multivariate statistical approach. Environ Monit Assess 123:125–150. https://doi.org/10.1007/s10661-006-9187-8

    Article  Google Scholar 

  • Panda UC, Rath P, Bramha S, Sahu KC (2010) Application of factor analysis in geochemical speciation of heavy metals in the sediments of a lake system—Chilika (India): a case study. J Coast Res 265:860–868. https://doi.org/10.2112/08-1077.1

    Article  Google Scholar 

  • Patiris DL, Tsabaris C, Anagnostou CL et al (2016) Activity concentration and spatial distribution of radionuclides in marine sediments close to the estuary of Shatt al-Arab/Arvand Rud River, the Gulf. J Environ Radioact 157:1–15. https://doi.org/10.1016/j.jenvrad.2016.02.025

    Article  Google Scholar 

  • Patra AK, Sudhakar J, Ravi PM et al (2006) Natural radioactivity distribution in geological matrices around Kaiga environment. J Radioanal Nucl Chem 270:307–312. https://doi.org/10.1007/s10967-006-0349-5

    Article  Google Scholar 

  • Raghu Y, Ravisankar R, Chandrasekaran A et al (2016) Assessment of natural radioactivity and radiological hazards in brick samples used in Tiruvannamalali district, Tamilnadu, India, with a statistical approach. Health Phys 111:265–280

    Article  Google Scholar 

  • Raghunath R, Tripathi RM, Mahapatra S, Sadasivan S (2002) Selenium levels in biological matrices in adult population of Mumbai, India. Sci Total Environ 285:21–27. https://doi.org/10.1016/S0048-9697(01)00892-0

    Article  Google Scholar 

  • Sahoo SK, Mohapatra S, Sethy NK et al (2010) Natural radioactivity in roadside soil along Jamshedpur-Musabani road: a mineralised and mining region, Jharkhand and associated risk. Radiat Prot Dosim 140:281–286. https://doi.org/10.1093/rpd/ncq111

    Article  Google Scholar 

  • Sarkar SK, Bhattacharya A, Bhattacharya AK et al (2012) Chilika Lake BT—encyclopedia of lakes and reservoirs. In: Bengtsson L, Herschy RW, Fairbridge RW (eds) Springer Netherlands, Dordrecht, pp 148–156

  • Schuiling RD, Scholten MJ, de Meijer RJ, Riezebos HJ (1985) Grain size distribution of different minerals in a sediment as a function of their specific density. Geol en Mijnb 64:199–203

    Google Scholar 

  • Scott D (1989) UNSCEAR Report: sources, Effects and Risks of Ionising Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, Report to the General Assembly, with Annexes. Int J Radiat Biol 55:1047–1048. https://doi.org/10.1080/09553008914551081

    Article  Google Scholar 

  • Simeonov V, Stratis JA, Samara C et al (2003) Assessment of the surface water quality in Northern Greece. Water Res. https://doi.org/10.1016/S0043-1354(03)00398-1

    Article  Google Scholar 

  • Simeonov V, Simeonova P, Tzimou-Tsitouridou R (2004) Chemometric quelity assessment of surface waters: two case studies. Chem i Inżynieria Ekol 11:449–469

    Google Scholar 

  • Singh KP, Malik A, Mohan D, Sinha S (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Res. https://doi.org/10.1016/j.watres.2004.06.011

    Article  Google Scholar 

  • Stockburger D (2001) Introductory statistics: concepts, models, and applications. Atomic Dog Publisher, Cincinnati

    Google Scholar 

  • Subba Rao MV, Rao BMG, Rao BR, Nanda NK (1981) Hydrological studies of the brackish water Chilika lagoon, Orissa. J Environ Biol 2:59–62

    Google Scholar 

  • Tripathi RM, Patra AC, Mohapatra S et al (2013) Natural radioactivity in surface marine sediments near the shore of Vizag, South East India and associated radiological risk. J Radioanal Nucl Chem 295:1829–1835. https://doi.org/10.1007/s10967-012-2106-2

    Article  Google Scholar 

  • Trivedi RK, Goel PK (1984) Chemical and biological methods for pollution. Environ Publ Karad, India

  • Tsai TL, Liu CC, Chuang CY et al (2011) The effects of physico-chemical properties on natural radioactivity levels, associated dose rate and evaluation of radiation hazard in the soil of Taiwan using statistical analysis. J Radioanal Nucl Chem 288:927–936. https://doi.org/10.1007/s10967-011-1032-z

    Article  Google Scholar 

  • Unnikrishnan W, Shahul H, Velayudhan KT et al (2009) Estimation of sedimentation rate in Chilika lake, Orissa using environmental 210 Pb isotope systematics. J Appl Geochem 11:102–110

    Google Scholar 

  • UNSCEAR (2000) United Nations Scientific Committee on the Effects of Atomic Radiation, “Sources and Effects of Ionizing Radiation,” UNSCEAR 2000 Report Vol.1 to the General Assembly, with scientific annexes, United Nations Sales Publication, United Nations, New York, 2000.

  • UNSCEAR (2008) United Nations Scientific Committee on the Effects of Atomic Radiation, Annex B. Exposures of the public and workers from various sources of radiation. Unscear 2008 Rep. https://doi.org/10.1097/00004032-199907000-00007

    Article  Google Scholar 

  • Usikalu MR, Akinyemi ML, Achuka JA (2014) Investigation of radiation levels in soil samples collected from selected locations in Ogun state, Nigeria. IERI Procedia 9:156–161. https://doi.org/10.1016/j.ieri.2014.09.056

    Article  Google Scholar 

  • Vega M, Pardo R, Barrado E, Debán L (1998) Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res 32:3581–3592. https://doi.org/10.1016/S0043-1354(98)00138-9

    Article  Google Scholar 

  • Wildung RE, Schmidt RL (1973) Phosphorus release from lake sediments. For sale by the Supt. of Docs., US Govt. Print. Off, EPA-R3-73-024, 185

  • Zachmann DW, Mohanti M, Treutler HC, Scharf B (2009) Assessment of element distribution and heavy metal contamination in Chilika Lake sediments (India). Lakes Reserv Res Manag 14:105–125. https://doi.org/10.1111/j.1440-1770.2009.00399.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanta Rath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bramha, S., Sahoo, S.K., Joel, E.S. et al. Influence of geochemical properties on natural radionuclides in the sediment of Asia’s largest brackish water lagoon, Chilika-East Coast of India: evaluation through geo-statistical applications. Environ Earth Sci 78, 652 (2019). https://doi.org/10.1007/s12665-019-8672-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-019-8672-7

Keywords

Navigation