Skip to main content

Advertisement

Log in

Change detection and prediction of urban land use changes by CA–Markov model (case study: Talesh County)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Earth’s surface has continued to change due to human activities and natural reasons. Land use and land cover (LULC) change is one of the significant issues which has considerable impacts on environment and its processes. Access to precise and up-to-date data of LULC through satellite images provides a great opportunity to detect, monitor and model a prediction of the future changes. The purpose of this research is to monitor and study land use changes, especially in urban land, during the past years and the possibility of predicting future changes by CA–Markov in Talesh County. In this research, satellite imagery of ETM 2000, LISS III 2007 and OLI-TIRS 2014 have been used. Supervised classification of images is done using the maximum likelihood method. Then the accuracy of the generated land use maps was evaluated using the overall accuracy and kappa coefficients. The results of the evaluation showed that land use maps from 2000, 2007 and 2014 had kappa coefficients equal to 0.86, 0.85 and 0.89, respectively, and an overall accuracy of 91%, 90%, and 93%. The land use map for 2028 has been predicted by the CA–Markov model. The results of the model forecast indicate a significant increase in the size of finished and urban areas by 29/83% and a reduction of the area of agricultural land, forests, and wastelands, respectively, to the 3/12, 0.59, and 0.48% over the next 14 years in the area under study. The model also showed that the future development of the city would occur linearly and mainly around the city of Hashtpar, especially on the western and eastern borders of the city.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdullahi S, Pradhan B (2018a) Land use change modeling and the effect of compact city paradigms: integration of GIS-based cellular automata and weights-of-evidence techniques. Environmental Earth Sciences 77(251):1–15. https://doi.org/10.1007/s12665-018-7429-z

    Article  Google Scholar 

  • Abdullahi S, Pradhan B (2018b) Land use change modeling and the effect of compact city paradigms: integration of GIS-based cellular automata and weights-of-evidence techniques. Environ Earth Sci 77(251):1–15. https://doi.org/10.1007/s12665-018-7429-z

    Article  Google Scholar 

  • Al-Bakri JT, Duqqah M, Brewer T (2013) Application of remote sensing and GIS for modeling and assessment of land use/cover change in Amman/Jordan. Journal of Geographic Information System 5(5):509–519

    Article  Google Scholar 

  • Alhamdan MZ, Oduor P, Flores AI, Kotikot SM, Mugo R, Ababu J (2017) Evaluating land cover changes in Eastern and Southern Africa from 2000 to 2010 using validated Landsat and MODIS data. Int J Appl Earth Obs Geoinf 62:8–26

    Article  Google Scholar 

  • Al-sharif AA, Pradhan B (2014) Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arab J Geosci 7(10):4291–4301

    Article  Google Scholar 

  • Al-sharif AA, Pradhan B (2015) A novel approach for predicting the spatial patterns of urban expansion by combining the Chi squared automatic integration detection decision tree, Markov chain and cellular automata models in GIS. Geocarto Int 30(8):858–881

    Article  Google Scholar 

  • Araya YH, Cabral P (2010) Analysis and modeling of urban land cover change in Setúbal and Sesimbra. Portugal. Remote Sensing 2(6):1549–1563

    Article  Google Scholar 

  • Aslami M, Akimov PA, Kaytukov TB (2015) About verification of multilevel wavelet-based numerical method of local structural analysis for two-dimensional problems. Procedia Eng 111:57–64

    Article  Google Scholar 

  • Barredo JI, Engelen G (2010) Land use scenario modeling for flood risk migration. Sustainability 2:1327–1344

    Article  Google Scholar 

  • Barredo JI, Lavalle JI, Kasanko M (2005) Urban scenario modeling and forecast for sustainable urban and regional. In: Campagna M (ed) GIS for sustainable development. CRC Press, Boca Raton, pp 245–329

    Google Scholar 

  • Batty M, Xie Y, Sun Z (1999) Modeling urban dynamics through GIS-based cellular automata. Comput Environ Urban Syst 23(3):205–233

    Article  Google Scholar 

  • Bounoua L, Nigro J, Zhang P, Thome K, Lachir A (2018) Mapping urbanization in the United States from 2001 to 2011. Appl Geogr 90:123–133

    Article  Google Scholar 

  • Brown DG, Pijanowski BC, Duh JD (2000) Modeling the relationships between land use and land cover on private lands in the Upper Midwest, USA. J Environ Manage 59(4):247–263

    Article  Google Scholar 

  • Chang CL, Chang JC (2006) Markov model and cellular automata for vegetation. J Geogr Res 45:45–57

    Google Scholar 

  • Chen L, Sun R, Liu H (2013a) Research progress of ecological environment effect in the evolution of urban landscape pattern. Acta Ecol Sin 33(4):1042–1050

    Article  Google Scholar 

  • Chen Y, Li X, Liu X, Ai B (2013b) Analyzing land-cover change and corresponding impacts on carbon budget in a fast developing sub-tropical region by integrating MODIS and Landsat TM/ETM + images. Appl Geogr 45(45):10–21

    Article  Google Scholar 

  • Dewan AM, Yamaguchi Y (2009) Land use and land cover change in Greater Dhaka, Bangladesh: using remote sensing to promote sustainable urbanization. Appl Geogr 29(3):390–401

    Article  Google Scholar 

  • Etemadi H, Smoak JM, Karami J (2018) Land use change assessment in coastal mangrove forests of Iran utilizing satellite imagery and CA–Markov algorithms to monitor and predict future change. Environ Earth Sci. https://doi.org/10.1007/s12665-018-7392-8

    Article  Google Scholar 

  • Fathizad H, Rostami N, Faramarzi M (2015) Detection and prediction of land cover changes using Markov chain model in semi-arid rangeland in western Iran. Environ Monit Assess 187:629. https://doi.org/10.1007/s10661-015-4805-y

    Article  Google Scholar 

  • Guan D, Li H, Su W, Nagaie T, Hokao K (2011) Modeling urban land use change by the integration of cellular automaton and Markov model. Ecol Model 222(20):3761–3772

    Article  Google Scholar 

  • Halimi M, Sedighifar Z, Mohammadi Ch (2018) Analysing spatiotemporal landuse/cover dynamic using remote sensing imagery and GIS techniques case: Kan basin of Iran. Geojournal 83:1067–1077

    Article  Google Scholar 

  • Halmy MWA, Gessler PE, Hicke JA, Salem BB (2015) Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Appl Geogr 63:101–112

    Article  Google Scholar 

  • Hamad R, Balzter H, Kolo K (2018) Predicting land use/land cover changes using a CA–Markov model under two different scenarios. Sustainability 10:123. https://doi.org/10.3390/su10103421

    Article  Google Scholar 

  • Hathout S (2002) The use of GIS for monitoring and predicting urban growth in East and West St Paul, Winnipeg, Manitoba, Canada. J Environ Manag 66(3):229–238

    Article  Google Scholar 

  • He C, Okada N, Zhang Q, Shi P, Zhang J (2006) Modeling urban expansion scenarios by coupling cellular automata model and system dynamic model in Beijing, China. Appl Geogr 26(3):323–345

    Article  Google Scholar 

  • Hyandye C, Martz LW (2017) A Markovian and cellular automata land use change predictive model of the Usangu catchment. Int J Remote Sens 38:64–81

    Article  Google Scholar 

  • Jabbari MK, Ahmadi S (2014) Modelling urban development using GIS and CA-Markov, pp 200–202 (Farsi language)

  • Jenerette GD, Wu J (2001) Analysis and simulation of land-use change in the central Arizona-Phoenix region, USA. Landsc Ecol 16(7):611–626

    Article  Google Scholar 

  • Kamusoko C, Aniya M, Adi B, Manjoro M (2009) Rural sustainability under threat in Zimbabwe–simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model. Appl Geogr 29(3):435–447

    Article  Google Scholar 

  • Li H, Reynolds JF (1997) Modeling effects of spatial pattern, drought, and grazing on rates of rangeland degradation: a combined Markov and cellular automaton approach. In: Quattrochi DA, Goodchild MF (eds) Scale in remote sensing and GIS. Lewis Publishers, New York, pp. 211–230

    Google Scholar 

  • Lillesand T, Kiefer RW, Chipman J (2014) Remote sensing and image interpretation. Wiley, Hoboken, pp 98–100

    Google Scholar 

  • López E, Bocco G, Mendoza M, Duhau E (2001) Predicting land-cover and land-use change in the urban fringe: a case in Morelia city, Mexico. Landsc Urban Plan 55(4):271–285

    Article  Google Scholar 

  • Lu Y, Wu P, Ma X, Li X (2019) Detection and prediction of land use/land cover change using spatiotemporal data fusion and the cellular Automata–Markov model. Environ Monit Assess 191:2. https://doi.org/10.1007/s10661-019-7200-2

    Article  Google Scholar 

  • Mas J-F, Kolb M, Paegelow M, Olmedo MTC, Houet T (2014) Inductive pattern-based land use/cover change models: A comparison of four software packages. Environ Model Softw 51:94–111

    Article  Google Scholar 

  • McCarthy MJ, Radabaugh K, Moyer RP, Muller-Karger FE (2018) Enabling efficient, large-scale high-spatial resolution wetland mapping using satellites. Remote Sens Environ 208:189–201

    Article  Google Scholar 

  • Megahed Y, Cabral P, Silva J, Caetano M (2015) Land cover mapping analysis and urban growth modelling using remote sensing techniques in Greater Cairo Region—Egypt. ISPRS Int J Geo-Inform 4(3):1750–1769

    Article  Google Scholar 

  • Muller MR, Middleton J (1994) A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landsc Ecol 9(2):151–157

    Google Scholar 

  • Myint SW, Wang L (2006) Multicriteria decision approach for land use land cover change using Markov chain analysis and a cellular automata approach. Can J Remote Sens 32(6):390–404

    Article  Google Scholar 

  • Osgouei PE, Kaya S (2017) Analysis of land cover/use changes using Landsat 5TMdata and indices. Environ Monit Assess 189(4):136

    Article  Google Scholar 

  • Palmate SS, Pandey A, Mishra SK (2017) Modelling spatiotemporal land dynamics for a trans-boundary river basin using integrated cellular automata and Markov chain approach. Appl Geogr 82:11–23

    Article  Google Scholar 

  • Pickard BR, Berkel DV, Petrasova A (2017) Predicts of urbanization scenarios reveal trade-offs between landscape change and ecosystem services. Landsc Ecol 32(3):617–634

    Article  Google Scholar 

  • Piquer-Rodríguez M, Kuemmerle T, Alcaraz-Segura D, Zurita-Milla R, Cabello J (2012) Future land use effects on the connectivity of protected area networks in southeastern Spain. J Nat Conserv 20(6):326–336

    Article  Google Scholar 

  • Riccioli F, El Asmar T, El Asmar JP, Fratini R (2013) Use of cellular automata in the study of variables involved in land use changes. Environ Monit Assess 185:5361–5374. https://doi.org/10.1007/s10661-012-2951-z

    Article  Google Scholar 

  • Rindfuss RR, Walsh SJ, Turner BL, Fox J, Mishra V (2004) Developing a science of land change: challenges and methodological issues. Proc Nat Acad Sci 101(39):13976–13981

    Article  Google Scholar 

  • Roose M, Hietal R (2018) A methodological Markov-CA projection of the greening agricultural landscape a case study from 2005 to 2017 in southwestern Finland. Environ Monit Assess 190(7):411. https://doi.org/10.1007/s10661-018-6796-y

    Article  Google Scholar 

  • Sang L, Zhang C, Yang J, Zhu D, Yun W (2011) Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Math Comput Model 54(3):938–943

    Article  Google Scholar 

  • Serra P, Pons X, Sauri D (2008) Land-cover and land-use change in a Mediterranean landscape: a spatial analysis of driving forces integrating biophysical and human factors. Appl Geogr 28(3):189–209

    Article  Google Scholar 

  • Shawul AA, Chakma S (2019) Spatiotemporal detection of land use/land cover change in the large basin using integrated approaches of remote sensing and GIS in the Upper Awash basin, Ethiopia. Environ Earth Sci. https://doi.org/10.1007/s12665-019-8154-y

    Article  Google Scholar 

  • Sohl TL, Claggett PR (2013) Clarity versus complexity: Land-use modeling as a practical tool for decision-makers. J Environ Manage 129:235–243

    Article  Google Scholar 

  • Subedi P, Subedi K, Thapa B (2013) Application of a hybrid cellular automaton–Markov (CA-Markov) model in land use change prediction: a case study of Saddle Creek Drainage Basin, Florida. Appl Ecol Environ Sci 1:126–132

    Google Scholar 

  • Tajbakhsh M, Memarian H, Shahrokhi Y (2016) Analyzing and modeling urban sprawl and land use changes in a developing city using a CA-Markovian approach. Glob J Environ Sci Manag 2(4):397–410

    Google Scholar 

  • Tudun-Wada MI, Tukur YM, YaU HMZS, Musa I, Lekwot VE (2014) Analysis of forest cover changes in Nimbia forest reserve, Kaduna State, Nigeria using geographic information system and remote sensing techniques. Analysis 4(21):73–83

    Google Scholar 

  • Wang SQ, Zheng XQ, Zang XB (2012) Accuracy assessments of land use change simulation based on Markov-cellular automata model. Procedia Environ Sci 13:1238–1245

    Article  Google Scholar 

  • Wang S, Zhang Z, Wang X (2014) Land use change and prediction in the Baimahe Basin using GIS and CA Markov model. In: IOP Conference Series: Earth and Environmental Science, IOP Publishing 17(1), pp 012074

    Article  Google Scholar 

  • Wu J, Shen W, Sun W, Tueller PT (2002) Empirical patterns of the effects of changing scale on landscape metrics. Landsc Ecol 17(8):761–782

    Article  Google Scholar 

  • Wu L, Liu X, Ma X (2018) Prediction of land-use change and its driving forces in an ecological restoration watershed of the Loess hilly region. Environ Earth Sci. https://doi.org/10.1007/s12665-018-7413-7

    Article  Google Scholar 

  • Yang X, Zheng XQ, Lv LN (2012) A spatiotemporal model of land use change based on ant colony optimization, Markov chain and cellular automata. Ecol Model 233:11–19

    Article  Google Scholar 

  • Yang X, Zheng X-Q, Chen R (2014) A land use change model: Integrating landscape pattern indexes and Markov-CA. Ecol Model 283:1–7

    Article  Google Scholar 

  • Zare Garizi A, Sheikh V, Saddodin A, Mahini S (2012) Simulating the spatiotemporal changes of forest extent for the Chehelchay watershed (Golestan province), using integrated CA-Markov model. Iran J For Poplar Res 20(2):273–285

    Google Scholar 

  • Zubair AO (2006) Change detection in land use and land cover using remote sensing data and GIS: a case study of Ilorin and its environs in Kwara State. MSc dissertation. University of Ibadan, Ibadan, Nigeria, pp 22–35

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamide Aliani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliani, H., Malmir, M., Sourodi, M. et al. Change detection and prediction of urban land use changes by CA–Markov model (case study: Talesh County). Environ Earth Sci 78, 546 (2019). https://doi.org/10.1007/s12665-019-8557-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-019-8557-9

Keywords

Navigation