Skip to main content

Advertisement

Log in

Spatial and temporal variability in hydrochemistry of a small-scale dolomite karst environment

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Dolomite karst systems are less common and less exploited than limestone systems, but still they can significantly contribute to drinking water supply in many countries. The knowledge about spatial and temporal variations of hydrochemical parameters of such systems is much more limited than for limestone karst aquifers. In the present research, 40-year-long observations of hydrochemical parameters gathered from five springs and a pumping well in Waidhofen an der Ybbs (Austria) were used to show the variability of chemical water composition in a small-scale ( ~ 10 km2) dolomite karst system. Integration of classic geochemical methods and multivariate statistical analysis revealed that the hydrofacies correlate directly with the lithofacies (dolomite) in the study area. At the same time, measured concentrations of Ca2+, Mg2+, Na+, Cl, and HCO3 allow for a classification of the springs in three groups based on their ionic ratios. This classification highlights the spatial and temporal variability that can be encountered in dolomite karst systems, even on small spatial scales, that are relevant for water suppliers. Moreover, temporal observations of hydrochemical parameters show increasing trends of nitrate concentrations in all sampling points, though with different rates. The analysis of the stable isotopes δ15N–NO3 and δ18O–NO3 revealed that nitrification processes in forest floors and mineral soils are the main source of nitrate in most locations investigated. The findings of the present study highlight the necessity of a detailed temporal and spatial distributed monitoring to support water resources management in dolomitic karst aquifers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albertin AR, Sickman JO, Pinowska A, Stevenson RJ (2012) Identification of nitrogen sources and transformations within karst springs using isotope tracers of nitrogen. Biogeochemistry 108(1–3):219–232

    Article  Google Scholar 

  • Andreo B, Gil-Márquez JM, Mudarra M, Linares L, Carrasco F (2016) Hypothesis on the hydrogeological context of wetland areas and springs related to evaporitic karst aquifers (Málaga, Córdoba and Jaén provinces, Southern Spain). Env Earth Sci 75(9):759

    Article  Google Scholar 

  • Benson RC, Yuhr LB (2016) Areas affected by karst and pseudokarst. In site characterization in Karst and Pseudokarst Terraines. Springer, Dordrecht, pp 41–43

    Book  Google Scholar 

  • Bicalho CC, Batiot-Guilhe C, Taupin JD, Patris N, Van Exter S, Jourde H (2017) A conceptual model for groundwater circulation using isotopes and geochemical tracers coupled with hydrodynamics: a case study of the Lez karst system, France. Chem Geol. https://doi.org/10.1016/j.chemgeo.2017.08.014

  • Bittner D, Narany TS, Kohl B, Disse M, Chiogna G (2018) Modeling the hydrological impact of land use change in a dolomite-dominated karst system. J Hydrol 567:267–279

    Article  Google Scholar 

  • Charizopoulos N, Zagana E, Psilovikos A (2018) Assessment of natural and anthropogenic impacts in groundwater, utilizing multivariate statistical analysis and inverse distance weighted interpolation modeling: the case of a Scopia basin (Central Greece). Env Earth Sci 77(10):380

    Article  Google Scholar 

  • Chovanec A (1994) Water quality monitoring in Austria. IWRB Publication no 40, pp 137–150

  • Cloutier V, Lefebvre R, Therrien R, Savard MM (2008) Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J Hydrol 353(3–4):294–313

    Article  Google Scholar 

  • Di Lorenzo T, Brilli M, Del Tosto D, Galassi DM, Petitta M (2012) Nitrate source and fate at the catchment scale of the Vibrata River and aquifer (central Italy): an analysis by integrating component approaches and nitrogen isotopes. Env Earth Sci 67(8):2383–2398

    Article  Google Scholar 

  • Dossi C, Ciceri E, Giussani B, Pozzi A, Galgaro A, Viero A, Viganò A (2007) Water and snow chemistry of main ions and trace elements in the karst system of Monte Pelmo massif (Dolomites, Eastern Alps, Italy). Mar Freshw Res 58(7):649–656

    Article  Google Scholar 

  • Einsiedl F, Mayer B (2006) Hydrodynamic and microbial processes controlling nitrate in a fissured-porous karst aquifer of the Franconian Alb, Southern Germany. Env Sci Technol 40(21):6697–6702

    Article  Google Scholar 

  • Einsiedl F, Maloszewski P, Stichler W (2005) Estimation of denitrification potential in a karst aquifer using the 15N and 18O isotopes of NO3 . Biogeochemistry 72(1):67–86

    Article  Google Scholar 

  • Fiorillo F, Guadagno FM (2010) Karst spring discharges analysis in relation to drought periods, using the SPI. Water Resour Manag 24(9):1867–1884

    Article  Google Scholar 

  • Goldscheider N (2005) Karst groundwater vulnerability mapping: application of a new method in the Swabian Alb, Germany. Hydrogeol J 13(4):555–564

    Article  Google Scholar 

  • Hacker P (2003) Hydrologisch-hydrogeologische Untersuchungen im Bereich des Glashüttenberges zur Frage des engeren Schutzgebietes für die Kerschbaumer-Quelle. ARC Seibersdorf research GmbH

  • Hamed KH, Rao AR (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204(1–4):182–196

    Article  Google Scholar 

  • Hartmann A, Mudarra M, Andreo B, Marín A, Wagener T, Lange J (2014) Modeling spatiotemporal impacts of hydroclimatic extremes on groundwater recharge at a Mediterranean karst aquifer. Water Resour Res 50(8):6507–6521

    Article  Google Scholar 

  • Hilberg S (2016) Natural tracers in fractured hard-rock aquifers in the Austrian part of the Eastern Alps—previous approaches and future perspectives for hydrogeology in mountain regions Revue. Hydrogeol J 24(5):1091–1105

    Article  Google Scholar 

  • Hilberg S, Schneider JF (2011) The aquifer characteristics of the dolomite formation a new approach for providing drinking water in the northern calcareous Alps region in Germany and Austria. Water Resour Manag 25(11):2705–2729

    Article  Google Scholar 

  • Hillebrand O, Nödler K, Sauter M, Licha T (2015) Multitracer experiment to evaluate the attenuation of selected organic micropollutants in a karst aquifer. Sci Total Env 506:338–343

    Article  Google Scholar 

  • Jebreen H, Wohnlich S, Banning A, Wisotzky F, Niedermayr A, Ghanem M (2018) Recharge, geochemical processes and water quality in karst aquifers: Central West Bank, Palestine. Env Earth Sci 77(6):261

    Article  Google Scholar 

  • Kanduč T, Mori N, Kocman D, Stibilj V, Grassa F (2012) Hydrogeochemistry of Alpine springs from North Slovenia: insights from stable isotopes. Chem Geol 300:40–54

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods, 4th edn. Charles Griffin, London

    Google Scholar 

  • Koeck R (2012) Climate change and impacts on water supply “CC-WaterS”. South-East-Europe project monograph. http://www.ccwaters.eu

  • Koeck R (2017) PROLINE-CE, workpackage t2, activity t2.1. In: Pilot action 1.2: Waidhofen/YBBS. Lead Institutions Municipality of Waidhofen/Ybbs. D.T2.1.4 descriptive documentation of pilot actions and related issues

  • Krawczyk WE, Ford DC (2006) Correlating specific conductivity with total hardness in limestone and dolomite karst waters. Earth Surf Process Landf 31(2):221–234

    Article  Google Scholar 

  • Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47(260):583–621

    Article  Google Scholar 

  • Mahler BJ, Valdes D, Musgrove M, Massei N (2008) Nutrient dynamics as indicators of karst processes: comparison of the Chalk aquifer (Normandy, France) and the Edwards aquifer (Texas, USA). J Contam Hydrol 98(1–2):36–49

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometr J Econometr Soc 1945:245–259

    Article  Google Scholar 

  • Markart G, Perzl F, Klebinder K, Kohl B, Adams M, Sotier B, Stary U, Strasser M, Suntinger K (2012). Evaluation and quantification of possible impacts of climate change on hydrological characteristics of forests in the Waidhofen ad Ybbs region. In: Final Report: CC-WaterS-Climate Change and Impacts on Water Supply. Bundesforschungszentrum für Wald, Vienna, Austria

  • Matiatos I (2016) Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: a case study of Asopos basin (Central Greece). Sci Total Env 541:802–814

    Article  Google Scholar 

  • Mayo AL, Loucks MD (1995) Solute and isotopic geochemistry and ground water flow in the central Wasatch Range, Utah. J Hydrol 172(1–4):31–59

    Article  Google Scholar 

  • Miorandi R, Borsato A, Frisia S, Fairchild IJ, Richter DK (2010) Epikarst hydrology and implications for stalagmite capture of climate changes at Grotta di Ernesto (NE Italy): results from long-term monitoring. Hydrol Proces 24(21):3101–3114

    Article  Google Scholar 

  • Mudarra M, Andreo B (2011) Relative importance of the saturated and the unsaturated zones in the hydrogeological functioning of karst aquifers: the case of Alta Cadena (Southern Spain). J Hydrol 397(3–4):263–280

    Article  Google Scholar 

  • Mudarra M, Andreo B, Mudry J (2012) Monitoring groundwater in the discharge area of a complex karst aquifer to assess the role of the saturated and unsaturated zones. Env Earth Sci 65(8):2321–2336

    Article  Google Scholar 

  • Musgrove M, Opsahl SP, Mahler BJ, Herrington C, Sample TL, Banta JR (2016) Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas. Sci Total Env 568:457–469

    Article  Google Scholar 

  • Narany TS, Aris AZ, Sefie A, Keesstra S (2017) Detecting and predicting the impact of land use changes on groundwater quality, a case study in Northern Kelantan, Malaysia. Sci Total Env 599:844–853

    Article  Google Scholar 

  • Nosrati K, Van Den Eeckhaut M (2012) Assessment of groundwater quality using multivariate statistical techniques in Hashtgerd Plain, Iran. Env Earth Sci 65(1):331–344

    Article  Google Scholar 

  • Perrin J, Jeannin PY, Zwahlen F (2003) Implications of the spatial variability of infiltration-water chemistry for the investigation of a karst aquifer: a field study at Milandre test site, Swiss Jura. Hydrogeol J 11(6):673–686

    Article  Google Scholar 

  • Pettitt AN (1979) A non-parametric approach to the change-point problem. Appl Statist 28:126–135

    Article  Google Scholar 

  • Pfleiderer S, Klein P, Reitner H, Heinrich M (2006) The hydrogeology of the Northern Calcareous Alps between the Rivers Enns and Ybbs. Austrian J Earth Sci 99:4–10

    Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. EOS Trans AGU 25(6):914–928

    Article  Google Scholar 

  • Promper C, Puissant A, Malet JP, Glade T (2014) Analysis of land cover changes in the past and the future as contribution to landslide risk scenarios. Appl Geogr 53:11–19

    Article  Google Scholar 

  • Schmidt S, Geyer T, Marei A, Guttman J, Sauter M (2013) Quantification of long-term wastewater impacts on karst groundwater resources in a semi-arid environment by chloride mass balance methods. J Hydrol 502:177–190

    Article  Google Scholar 

  • Spoelstra J, Schiff SL, Hazlett PW, Jeffries DS, Semkin RG (2007) The isotopic composition of nitrate produced from nitrification in a hardwood forest floor. Geochim Cosmochim Acta 71(15):3757–3771

    Article  Google Scholar 

  • Szramek K, McIntosh JC, Williams EL, Kanduc T, Ogrinc N, Walter LM (2007) Relative weathering intensity of calcite versus dolomite in carbonate‐bearing temperate zone watersheds: carbonate geochemistry and fluxes from catchments within the St. Lawrence and Danube river basins. Geochem Geophys Geosyst 8:4

  • Wang SJ, Li RL, Sun CX, Zhang DF, Li FQ, Zhou DQ, Xiong KN, Zhou ZF (2004) How types of carbonate rock assemblages constrain the distribution of karst rocky desertified land in Guizhou Province, PR China: phenomena and mechanisms. Land Degrad Dev 15(2):123–131

    Article  Google Scholar 

  • Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244

    Article  Google Scholar 

  • Wassenaar LI (1995) Evaluation of the origin and fate of nitrate in the Abbotsford aquifer using the isotopes of 15N and 18O in NO3 . Appl Geochem 10(4):391–405

    Article  Google Scholar 

  • Yue S, Wang C (2004) The Mann–Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manag 18(3):201–218

    Article  Google Scholar 

Download references

Acknowledgements

The authors refer to the ERDF-funded Interreg Central Europe project PROLINE-CE. The authors would also like to thank the water works in Waidhofen a.d. Ybbs for providing long-term groundwater chemistry information from springs and pumping well. The first author is grateful to the Gender & Diversity Incentive Fund (GDIF) of Technical University of Munich for supporting the researches. In addition, Prof. Chiogna acknowledges the support of the Stiftungsfonds für Umweltökonomie und Nachhaltigkeit GmbH (SUN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahoora Sheikhy Narany.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a Topical Collection in Environmental Earth Sciences on Groundwater resources in a changing environment, guest edited by Okke Batelaan, Fabien Magri, and Martin Sauter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikhy Narany, T., Bittner, D., Disse, M. et al. Spatial and temporal variability in hydrochemistry of a small-scale dolomite karst environment. Environ Earth Sci 78, 273 (2019). https://doi.org/10.1007/s12665-019-8276-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-019-8276-2

Keywords

Navigation