Skip to main content

Advertisement

Log in

Assessment of sustainability of groundwater in urban areas (Porto, NW Portugal): a GIS mapping approach to evaluate vulnerability, infiltration and recharge

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The urban water cycle concept demonstrates the connectivity and interdependence of urban water resources and human activities, and the need for integrated sustainable management studies and approaches. The role of climate, geology, geomorphology, land-use/cover, hydrogeochemistry, hydraulics, human activities among other features is significant in urban areas. In addition, land-use development has a stronger influence on terrestrial hydrology than climate variability. The need for provision of safe water, sanitation and drainage systems is key elements to consider for the groundwater resources in complex urban environments. In recent years, a new focus has emerged, addressing issues on integrated GIS mapping studies on urban water supply systems, particularly in historical cities. To illustrate that approach the Porto urban area (NW Portugal) was selected. This work presents a comprehensive study to demonstrate the key importance of urban groundwater studies, as well as the evaluation of the Urban Infiltration Potential Index and the potential groundwater yields that might be available for non-potable uses, such as irrigation of parks and lawns, street cleaning and firefighting. This strategy is useful for the planning and management of urban groundwater abstraction in an equitable and sustainable manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Afonso MJ (2011) Hidrogeologia e hidrogeoquímica da região litoral urbana do Porto, entre Vila do Conde e Vila Nova de Gaia (NW de Portugal): implicações geoambientais. Universidade Técnica de Lisboa, Lisbon (Ph.D. Thesis)

  • Afonso MJ, Marques JM, Guimarães L, Costa I, Teixeira J, Seabra C, Rocha F, Guilhermino L, Chaminé HI (2007) Urban hydrogeology of the Paranhos sector, Porto city (NW Portugal): a geoenvironmental perspective. In: Chery L, Marsily G (eds) Aquifer systems management: Darcy’s legacy in a world of impending water shortage. IAH selected papers on hydrogeology, vol SP10. Taylor & Francis, CRC Press, Boca Raton, pp 391–406

    Google Scholar 

  • Afonso MJ, Chaminé HI, Marques JM, Carreira PM, Guimarães L, Guilhermino L, Gomes A, Fonseca PE, Pires A, Rocha F (2010) Environmental issues in urban groundwater systems: a multidisciplinary study of the Paranhos and Salgueiros spring waters, Porto (NW Portugal). Environ Earth Sci 61(2):379–392

    Google Scholar 

  • Afonso MJ, Freitas L, Pereira A, Neves L, Guimarães L, Guilhermino L, Mayer B, Rocha F, Marques JM, Chaminé HI (2016) Environmental groundwater vulnerability assessment in urban water mines (Porto, NW Portugal). Water 8:499

    Article  Google Scholar 

  • Aller L, Bennet T, Lehr JH, Petty RJ (1987) DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrologic settings. US EPA Report, 600/2–87/035, Robert S. Kerr Environmental Research Laboratory, Ada

  • Almeida A (2006) Geology and urban landscape: the granite in Oporto, NW Portugal. Eur Geol J 21(1):4–8

    Google Scholar 

  • Attard G, Winiarski T, Rossier Y, Eisenlohr L (2016) Impact of underground structures on the flow of urban groundwater. Hydrogeol J 24:5–19

    Article  Google Scholar 

  • Begonha A, Sequeira Braga MA (2002) Weathering of the Oporto granite: geotechnical and physical properties. Catena 49:57–76

    Article  Google Scholar 

  • Braden JB, Jolejole-Foreman MC, Schneider DW (2014) Humans and the water environment: the need for coordinated data collection. Water 6(1):1–16

    Article  Google Scholar 

  • Brunelli M (2015) Introduction to the analytic hierarchy process. SpringerBriefs in operations research. Springer International Publishing, Berlin

    Google Scholar 

  • Caetano M, Nunes V, Nunes A (2009) CORINE land cover 2006 for continental. Portugal Instituto Geográfico Português, Lisbon

    Google Scholar 

  • Chaminé HI (2015) Water resources meet sustainability: new trends in environmental hydrogeology and groundwater engineering. Environ Earth Sci 73(6):2513–2520

    Article  Google Scholar 

  • Chaminé HI, Afonso MJ, Robalo PM, Rodrigues P, Cortez C, Monteiro Santos FA, Plancha JP, Fonseca PE, Gomes A, Devy-Vareta NF, Marques JM, Lopes ME, Fontes G, Pires A, Rocha F (2010) Urban speleology applied to groundwater and geo-engineering studies: underground topographic surveying of the ancient Arca D’Água galleries catchworks (Porto, NW Portugal). Int J Speleol 39(1):1–14

    Article  Google Scholar 

  • Chaminé HI, Carvalho JM, Teixeira J, Freitas L (2015) Role of hydrogeological mapping in groundwater practice: back to basics. Eur Geol J 40:34–42

    Google Scholar 

  • Chaminé HI, Teixeira J, Freitas L, Pires A, Silva RS, Pinho T, Monteiro R, Costa AL, Abreu T, Trigo JF, Afonso MJ, Carvalho JM (2016) From engineering geosciences mapping towards sustainable urban planning. Eur Geol J 41:16–25

    Google Scholar 

  • Civita MV (1994) Le carte della vulnerabilità degli acquiferi all’inquinamento: teoria & pratica. Pitagora Editrice, Bologna

    Google Scholar 

  • Civita MV (2010) The combined approach when assessing and mapping groundwater vulnerability to contamination. J Water Resour Prot 2:14–28

    Article  Google Scholar 

  • Civita MV, De Maio M (2000) Valutazione e cartografia automatica della vulnerabilità degli acquiferi all’inquinamento con il sistema parametrico: SINTACS R5. Pitagora Editrice, Bologna

  • COBA-Consultores de Engenharia e Ambiente, SA (2003) Carta geotécnica do Porto, 2ª edição. COBA/FCUP/CMP, Porto

    Google Scholar 

  • Costa-Lobo M (1991) Oporto: city profile. Cities 8:38–43

    Article  Google Scholar 

  • David EL (1971) Public perceptions of water quality. Water Resour Res 7:453–457

    Article  Google Scholar 

  • de Oliveira Marques AH (1972) History of Portugal, from Lusitania to Empire, vol 1. Columbia University Press, New York

    Google Scholar 

  • Ettazarini S (2007) Groundwater potentiality index: a strategically conceived tool for water research in fractured aquifers. Environ Geol 52(3):477–487

    Article  Google Scholar 

  • European Environment Agency (EEA) (2007) CLC2006 technical guidelines: update of Corine land cover (CLC) for the reference year 2006. European Environment Agency, Copenhagen

    Google Scholar 

  • Ferreira da Silva AJ (1889) Contribuições para a hygiene da cidade do Porto. Typographia António José da Silva Teixeira, Porto

    Google Scholar 

  • Fontes A (1908) Contribuição para a hygiene do Porto: analyse sanitaria do seu abastecimento em água potável. I. Estudo dos mananciaes de Paranhos e Salgueiros. Escola Médico-Cirúrgica do Porto (Graduation Dissertation). https://repositorio-aberto.up.pt/handle/10216/17066. Accessed Jan 2017

  • Foster SD (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: van Duijvenbooden W, van Waegeningh HG (eds) Proceedings and information, vulnerability of soil and under groundwater to pollutants, vol 38. TNO committee on hydrological research, The Hague, pp 69–86

  • Foster SD, Ait-Kadi M (2012) Integrated water resources management (IWRM): how does groundwater fit in? Hydrogeol J 20:415–418

    Article  Google Scholar 

  • Foster SD, MacDonald A (2014) The ‘water security’ dialogue: why it needs to be better informed about groundwater. Hydrogeol J 22:1489–1492

    Article  Google Scholar 

  • Foster SD, Hirata R, Gomes D, D’Elia M, Paris M (2002) Groundwater quality protection: a guide for water utilities, municipal authorities, and environment agencies. The World Bank, Washington, DC

    Book  Google Scholar 

  • Foster SD, Hirata R, Howard KWF (2011) Groundwater use in developing cities: policy issues arising from current trends. Hydrogeol J 19:271–274

    Article  Google Scholar 

  • Francés A, Paralta E, Fernandes J, Ribeiro L (2001) Development and application in the Alentejo region of a method to assess the vulnerability of groundwater to diffuse agricultural pollution: the susceptibility index. In: Ribeiro L (ed) Proceedings 3rd International Conference on Future Groundwater Resources at Risk, CVRM, pp 35–44

  • Freitas L, Afonso MJ, Devy-Vareta N, Marques JM, Gomes A, Chaminé HI (2014) Coupling hydrotoponymy and GIS cartography: a case study of hydro-historical issues in urban groundwater systems, Porto, NW Portugal. Geogr Res 52(2):182–197

    Article  Google Scholar 

  • Gaj F, Guglielmetti V, Grasso P, Giacomin G (2003) Experience on Porto: EPB follow-up. Tunn Tunn Int 35(12):15–18

    Google Scholar 

  • Garcia-Fresca B, Sharp JM (2005) Hydrogeologic considerations of urban development: urban-induced recharge. In: Ehlen J, Haneberg WC, Larson RA (eds) Humans as geologic agents. Reviews in engineering geology, vol XVI. The Geological Society of America, Boulder, pp 123–136

    Google Scholar 

  • Haase D (2009) Effects of urbanisation on the water balance: a long-term trajectory. Environ Impact Assess Rev 29(4):211–219

    Article  Google Scholar 

  • Hibbs BJ (2016) Groundwater in urban areas. J Contemp Water Res Educ 159:1–4

    Article  Google Scholar 

  • Hibbs BJ, Sharp JM (2012) Hydrogeological impacts of urbanization. Environ Eng Geosci 18(1):3–24

    Article  Google Scholar 

  • Howard KWF (2015) Sustainable cities and the groundwater governance challenge. Environ Earth Sci 73(6):2543–2554

    Article  Google Scholar 

  • IGP-Instituto Geográfico Português (2010) Carta de uso e ocupação do solo de Portugal Continental para 2007 (COS2007): memória descritiva. Instituto Geográfico Português, Lisbon

    Google Scholar 

  • Ilmola I (2016) Approaches to measurement of urban resilience. In: Yamagata Y, Maruyama H (eds) Urban resilience: advanced sciences and technologies for security applications. Springer International Publishing, Cham, pp 207–237

    Chapter  Google Scholar 

  • INE-Instituto Nacional de Estatística (2011) Statistical information about Portuguese population: Porto city. http://www.ine.pt/. Accessed Dec 2017

  • Jaiswal RK, Mukherjee S, Krishnamurthy J, Saxena R (2003) Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development: an approach. Int J Remote Sens 24(5):993–1008

    Article  Google Scholar 

  • Jha MK (2011) GIS-Based groundwater modeling: an integrated tool for managing groundwater-induced disasters. In: Laughton RH (ed) Aquifers: formation, transport and pollution, environmental science. Engineering and Technology series. Nova Science Pub., Inc Hauppauge, New York

    Google Scholar 

  • Kaushal SS, McDowell WH, Wollheim WM, Johnson TAN, Mayer PM, Belt KT, Pennino MJ (2015) Urban evolution: the role of water. Water 7(8):4063–4087

    Article  Google Scholar 

  • Kim GB, Ahn JS, Marui A (2009) Analytic hierarchy models for regional groundwater monitoring well allocation in Southeast Asian countries and South Korea. Environ Earth Sci 59:325–338

    Article  Google Scholar 

  • Koop SHA, Van Leeuwen CJ (2015a) Application of the improved City Blueprint Framework in 45 municipalities and regions. Water Resour Manag 29(13):4629–4647

    Article  Google Scholar 

  • Koop SHA, van Leeuwen CJ (2015b) Assessment of the sustainability of water resources management: a critical review of the city blueprint approach. Water Resour Manage 29(15):5567–5649

    Article  Google Scholar 

  • Lerner DN (2002) Identifying and quantifying urban recharge: a review. Hydrogeol J 10:143–152

    Article  Google Scholar 

  • Margat J, van der Gun J (2013) Groundwater around the world: a geographic synopsis. CRC Press, Boca Raton

    Book  Google Scholar 

  • Marques RC, Ferreira da Cruz N, Pires J (2015) Measuring the sustainability of urban water services. Environ Sci Policy 54:142–151

    Article  Google Scholar 

  • Martínez-Navarrete C, Jiménez-Madrid A, Castaño S, Luque JA, Carrasco F (2013) Integration of groundwater protection for human consumption in land use planning. Eur Geol J 38:53–58

    Google Scholar 

  • Massing H, Packman J, Zuidema FC (1990) Hydrological processes and water management in urban areas. IAHS Publ 198:362

    Google Scholar 

  • Miller AZ, Garcia-Sanchez AM, Martin-Sanchez PM, Costa Pereira MF, Spangenberg JE, Jurado V, Dionísio A, Afonso MJ, Chaminé HI, Hermosin B, Saiz-Jimenez C (2018) Origin of abundant moonmilk deposits in a subsurface granitic environment. Sedimentology. https://doi.org/10.1111/sed.12431

    Article  Google Scholar 

  • Mu E, Pereyra-Rojas M (2017) Understanding the analytic hierarchy process. In: Practical decision making. Springer Briefs in operations research. Springer, Cham

    Chapter  Google Scholar 

  • Rathnayaka K, Malano H, Arora M (2016) Assessment of sustainability of urban water supply and demand management options: a comprehensive approach. Water 8:595

    Article  Google Scholar 

  • Re V (2015) Incorporating the social dimension into hydrogeochemical investigations for rural development: the Bir al-Nas approach for socio-hydrogeology. Hydrogeol J 23(7):1293–1304

    Article  Google Scholar 

  • Ribeiro L, Pindo JC, Dominguez-Granda L (2017) Assessment of groundwater vulnerability in the Daule aquifer, Ecuador, using the susceptibility index method. Sci Total Environ 574:1674–1683

    Article  Google Scholar 

  • Rockström J, Falkenmark M, Folke C, Lannerstad M, Barron J, Enfors E, Gordon LWF, Heinke J, Hoff H, Pahl-Wostl C (2014) Water resilience for human prosperity. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Saaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1(1):83–98

    Google Scholar 

  • Saaty TL (2012) Decision making for leaders: the analytic hierarchy process for decisions in a complex World, 3rd edn. RWS Publications, Pittsburgh

    Google Scholar 

  • Sægrov S, Brattebø H, Alegre H, Ugarell R (2016) How to assess sustainability of urban water cycle systems (UWCS). Development of a metering methodology. In: Proceedings of the 7th international conference on sustainable built environment, Sri Lanka

  • Sharp JM (2010) The impacts of urbanization on groundwater systems and recharge. Aqua Mundi 01008:051–056

    Google Scholar 

  • Sharp JM, Hansen JM, Krothe JN (2001) Effects of urbanization on hydrogeological systems: the physical effects of utility trenches. In: Seiler KP, Wohnlich S (eds) New approaches characterizing groundwater flow: XXXI congress, supplement volume. International Association of Hydrogeologists, Munich

    Google Scholar 

  • Sivapalan M, Savenije HHG, Blöschl G (2012) Socio-hydrology: a new science of people and water. Hydrol Process 26:1270–1276

    Article  Google Scholar 

  • Srinivasan V, Seto KC, Emerson R, Gorelick SM (2013) The impact of urbanization on water vulnerability: a coupled human–environment system approach for Chennai, India. Glob Environ Change 23:229–239

    Article  Google Scholar 

  • Stigter TY, Varanda M, Bento S, Nunes JP, Hugman R (2017) Combined assessment of climate change and socio-economic development as drivers of freshwater availability in the south of Portugal. Water Resour Manag 31:609–628

    Article  Google Scholar 

  • Teixeira J, Chaminé HI, Carvalho JM, Pérez-Alberti A, Rocha F (2013) Hydrogeomorphological mapping as a tool in groundwater exploration. J Maps 9:263–273

    Article  Google Scholar 

  • Teixeira J, Chaminé HI, Espinha Marques J, Carvalho JM, Pereira AJ, Carvalho MR, Fonseca PE, Pérez-Alberti A, Rocha F (2015) A comprehensive analysis of groundwater resources using GIS and multicriteria tools (Caldas da Cavaca, Central Portugal): environmental issues. Environ Earth Sci 73(6):2699–2715

    Article  Google Scholar 

  • Tubau I, Vázquez-Suñé E, Carrera J, Valhondo C, Criollo R (2017) Quantification of groundwater recharge in urban environments. Sci Total Environ 592:391–402

    Article  Google Scholar 

  • UN-United Nations (2014) World urbanization prospects: the 2014 revision. Department of Economic and Social Affairs, Population Division, United Nations, New York

    Book  Google Scholar 

  • van Leeuwen K, Frijns J, van Wezel A, van de Ven FHM (2012) Cities blueprints: 24 indicators to assess the sustainability of the urban water cycle. Water Resour Manag 26:2177–2197

    Article  Google Scholar 

  • Vázquez-Suñé E, Carrera J, Tubau I, Sánchez-Vila X, Soler A (2010) An approach to identify urban groundwater recharge. Hydrol Earth Syst Sci 14:2085–2097

    Article  Google Scholar 

  • Verbeeck K, van Orshoven J, Hermy M (2011) Measuring extent, location and change of imperviousness in urban domestic gardens in collective housing projects. Land Urban Plan 100(1):57–66

    Article  Google Scholar 

  • Vrba J, Zaporozec A (1994) Guidebook on mapping groundwater vulnerability. International Association of Hydrogeologists ICH 16, Verlag Heinz Heise, Hannover

    Google Scholar 

  • Wiles TJ, Sharp JM (2008) The secondary permeability of impervious cover. Environ Eng Geosci 14(4):251–265

    Article  Google Scholar 

  • Yang Y, Lerner DN, Barrett MH, Tellam JH (1999) Quantification of groundwater recharge in the city of Nottingham, UK. Environ Geol 38(3):183–198

    Article  Google Scholar 

  • Yeh H-F, Lee C-H, Hsu K-C, Chang P-H (2009) GIS for the assessment of the groundwater recharge potential zone. Environ Geol 58(1):185–195

    Article  Google Scholar 

  • Zaporozec A (ed) (2004) Groundwater contamination inventory: a methodological guide with a model legend for groundwater contamination inventory and risk maps. UNESCO, IHP-VI, series on groundwater, 2. UNESCO, Paris

    Google Scholar 

Download references

Acknowledgements

This study was carried out under the framework of the projects LABCARGA|ISEP re-equipment program (IPP-ISEP|PAD’2007/08) and Centre GeoBioTec|UA (UID/GEO/04035/2013). The research was also funded by a doctoral scholarship from the Portuguese Foundation for Science and Technology (FCT) to L. Freitas (SFRH/BD/117927/2016). Special thanks are due to colleagues J. Teixeira and J. M. Carvalho for the inputs in some stages of the research. We acknowledge the anonymous reviewers for the constructive comments that helped to improve the focus of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Freitas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitas, L., Afonso, M.J., Pereira, A.J.S.C. et al. Assessment of sustainability of groundwater in urban areas (Porto, NW Portugal): a GIS mapping approach to evaluate vulnerability, infiltration and recharge. Environ Earth Sci 78, 140 (2019). https://doi.org/10.1007/s12665-019-8167-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-019-8167-6

Keywords

Navigation