Skip to main content
Log in

Hydrochemical characterization and geospatial analysis of groundwater quality in Cap Bon region, northeastern Tunisia

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The hydrogeochemical characteristics of shallow groundwater in the Grombalia region, northeastern Tunisia, were investigated to evaluate suitability for irrigation and other uses and to determine the main processes that control its chemical composition. A total of 21 groundwater samples were collected from existing wells in January–February 2015 and were analyzed for the major cations and anions concentrations. Conductivity, pH, T°, O2 and salinity were also measured. Interrelationships between chemical parameters were determined by using the scatter matrix method. The suitability of groundwater for irrigation and other uses was assessed by determining the sodium adsorption ratio, soluble-sodium percentage, total dissolved solids, total hardness, Kelly’s index and permeability index values of water samples. The spatial distribution of key parameters was assessed using a GIS-based spatial gridding technique. This analysis indicated that the chemical composition of groundwater in the study area is of Cl–SO4–Na–Ca mixed facies with concentrations of many chemical constituents exceeding known guideline values for irrigation. The salinity of groundwater is controlled by most dominant cation and anion (Na–Cl). A correlation analysis shows that Na+ is the dominant cation and that reverse ion exchange is a dominant process that controls the hydrogeochemical evolution of groundwater in the area. Geospatial mapping of hydrochemical parameters and indices analyzed with the USSL and Wilcox diagrams show distinctive areas of irrigation suitability. In contrast, 76.2% of samples fall in the highly doubtful to unsuitable category and indicate that the central and north-eastern parts of the study area are unsuitable for irrigation due to a high salinity and alkalinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abu-alnaeem MF, Yusoff I, Fatt Ng T, Alias Y, Raksmey M (2018) Assessment of groundwater salinity and quality in Gaza coastal aquifer, Gaza Strip, Palestine: an integrated statistical, geostatistical and hydrogeochemical approaches study. Sci Total Environ 615:972–989

    Article  Google Scholar 

  • Alam M, Rais S, Aslam M (2012) Hydrochemical investigation and quality assessment of ground water in rural areas of Delhi, India. Environ Earth Sci 66:97–110. https://doi.org/10.1007/s12665-011-1210-x

    Article  Google Scholar 

  • Ameur M, Hamzaoui-Azaza F, Gueddari M (2016) Suitability for human consumption and agriculture purposes of Sminja aquifer groundwater in Zaghouan (north-east of Tunisia) using GIS and geochemistry techniques. Environ Geochem Health 38:1147–1167. https://doi.org/10.1007/s10653-015-9780-2

    Article  Google Scholar 

  • Andersen CB (2001) The problem of sample contamination in a fluvial geochemistry research experience for undergraduates. J Geosci Educ 49:351–357

    Article  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater, vol 20. American Public Health Association (APHA), Washington, DC

    Google Scholar 

  • Argamasilla M, Barberà JA, Andreo B (2017) Factors controlling groundwater salinization and hydrogeochemical processes in coastal aquifers from southern Spain. Sci Total Environ 580(February 2017):50–68 15

    Article  Google Scholar 

  • Arnould M (1950) Carte géologique de la Tunisie au 1/50 000, Feuille N°22 Menzel Bouzelfa. Office National des Mines, Tunisie

    Google Scholar 

  • Arnould P, Hotyat M (2003) Eau et environnement. Tunisie et milieux méditerranéens. ENS, Lyon

    Book  Google Scholar 

  • Arslan H (2013) Application of multivariate statistical techniques in the assessment of groundwater quality in seawater intrusion area in Bafra Plain. Turkey Environ Monit Assess 185:2439. https://doi.org/10.1007/s10661-012-2722-x

    Article  Google Scholar 

  • Bedir M, Tlig S, Bobier C, Aissaoui N (1996) Sequence stratigraphy, basin dynamics, and petroleum geology of the Miocene from eastern Tunisia. AAPG Bull 80(1):63–80

    Google Scholar 

  • Ben Ayed N (1993) Evolution tectonique de l’avant-pays de la chaîne alpine de Tunisie du début du Mésozoïque à l’Actuel. Ann Mines Geol Ed Serv Géol Tunisie 32:1–286

    Google Scholar 

  • Ben Ismail-Lattrache K, Bobier C (1984) Sur l’évolution des paléoenvironnements marins paléogènes des bordures occidentales du détroit Siculo-Tunisien et leurs rapports avec les fluctuations du paléo-océan mondial. Mar Geol 55:195–217

    Article  Google Scholar 

  • Ben Moussa A, Zouari K, Oueslati N (2009) Geochemical study of groundwater mineralization in the Grombalia shallow aquifer, north-eastern Tunisia: implication of irrigation and industrial waste water accounting. Environ Geol 58:555–566. https://doi.org/10.1007/s00254-008-1530-7

    Article  Google Scholar 

  • Ben Salem H (1992) Contribution à la connaissance de la géologie du Cap Bon: Stratigraphie, Tectonique et Sédimentologie. Dissertation, Faculté des Sciences de Tunis, University of Tunis El Manar

  • Bennetts DA, Webb JA, Stoneb DJM, Hill DM (2006) Understanding the salinisation process for groundwater in an area of south-eastern Australia, using hydrochemical and isotopic evidence. J Hydrol 323(1–4):178–192. https://doi.org/10.1016/j.jhydrol.2005.08.023

    Article  Google Scholar 

  • Biely A, Rakús M, Robinson P, Salaj J (1972) Essai de corrélation des formations miocènes au sud de la Dorsale tunisienne. Not Serv Géol Tunisie Tunis 38:73–93

    Google Scholar 

  • Boughariou E, Bahloul M, Jmal I, Allouche N, Makni J, Khanfir H, et Bouri S (2018) Hydrochemical and statistical studies of the groundwater salinization combined with MODPATH numerical model: case of the Sfax coastal aquifer, Southeast Tunisia. Arab J Geosci 11:69. https://doi.org/10.1007/s12517-018-3408-7

    Article  Google Scholar 

  • Bouksila F, Bahri A, Berndtsson R, Persson R, Rozema J, Van der Zee S (2013) Assessment of soil salinization risks under irrigation with brackish water in semiarid Tunisia. Environ Exp Bot 92:176–185. https://doi.org/10.1016/j.envexpbot.2012.06.002

    Article  Google Scholar 

  • Bujalka P, Johan Z, Krivy M, Rakus M, Vacek J (1971) Carte géologique de la Tunisie, Grombalia à l’échelle 1/50000. Notes du service Géologique de Tunisie

  • Burollet PF (1956) Signification géologique de l’axe Nord-Sud. Actes du 1er Congrès Nat Sci Terre, Tunisie, pp 315–319

    Google Scholar 

  • Carol E, Kruse E, Mas-Pla J (2009) Hydrochemical and isotopical evidence of ground water salinization processes on the coastal plain of Samborombón Bay, Argentina. J Hydrol 365:335–345

    Article  Google Scholar 

  • Castany G (1948) Les fossés d’effondrement de Tunisie, Géologie et Hydrologie. Plaine de Grombalia et cuvettes de la Tunisie Orientale. Premier fascicule. Ann Mines Géol (3), ONM, Tunis

  • Chakroun A, Zaghbib-Turki D, Miskovsky JC, Davaud E (2009) Two Tyrrhenian transgressive cycles in coastal deposits of the Cap Bon Peninsula, Tunisia. Quaternaire 20:215–226. https://doi.org/10.4000/quaternaire.5140

    Article  Google Scholar 

  • Chen C-H, Wang C-H, Wen S, Yeh T-K, Lin C-H,. Liu J-Y, Yen H-Y, Lin C, Rau R-J, Lin T-W (2013) Anomalous frequency characteristics of groundwater level before major earthquakes in Taiwan. Hydrol Earth Syst Sci 17:1693–1703

    Article  Google Scholar 

  • Chihi L (1995) Les fossés néogènes quaternaires de la Tunisie et de la mer Pélagienne: une étude structurale et une signification dans le cadre géodynamique de la Méditerranée centrale. Dissertation, University of Tunis II

  • Custodio E (1993) Coastal aquifer salinization as a consequence of aridity: the case of Amurga phonolitic massif, Gran Canaria Island. In: Study and modelling of saltwater intrusion. CIMNE-UPC, Barcelona, pp 81–98

    Google Scholar 

  • Danielsson A, Cato I, Carman R, Rahm L (1999) Spatial clustering of metals in the sediments of the Skagerrak/Kattegat. Appl Geochem 14:689–706

    Article  Google Scholar 

  • Davis JC (2002) Statistics and data analysis in geology, 3rd ed. Wiley, Oxford

    Google Scholar 

  • DGRE Direction Générale des Ressources en Eaux (1998) Réseau de suivi de la qualité des eaux souterraines en Tunisie. Report, Tunis

  • Dhraief W, Dhahri F, Chalwati I, Boukadi N (2017) Tectonosedimentary framework of Upper Cretaceous—Neogene series in the Gulf of Tunis inferred from subsurface data: implications for petroleum exploration. Geol Carpath 68(2):97–108. https://doi.org/10.1515/geoca-2017-0008

    Article  Google Scholar 

  • Elango L, Suresh Kumar S, Rajmohan N (2003) Hydrochemical studies of groundwater in Chengalpet region, South India. Indian J Environ Prot 23(6):624–632

    Google Scholar 

  • Ennabli M (1980) Etude hydrogéologique des aquifères du Nord-Est de la Tunisie pour une gestion intégrée des ressources en eau. Thesis, Nice University, France

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs (ISBN:978-0133653120)

    Google Scholar 

  • Gil-Márquez JM, Barberá JA, Andreo B, Mudarra M (2017) Hydrological and geochemical processes constraining groundwater salinity in wetland areas related to evaporitic (karst) systems. A case study from Southern Spain. J Hydrol 544:358–554

    Article  Google Scholar 

  • Gupta S, Nayek S, Chakraborty D (2016) Hydrochemical evaluation of Rangit river, Sikkim, India: using Water Quality Index and multivariate statistics. Environ Earth Sci 75:567. https://doi.org/10.1007/s12665-015-5223-8

    Article  Google Scholar 

  • Hadj Sassi M, Zouari H, Jallouli C (2006) Gravity and seismic contribution for a new geodynamic interpretation of troughs in Tunisia: the example of the Grombalia trough. Comptes Rendus Geosci 338:751–756. https://doi.org/10.1016/j.ctre.2006.07.005

    Article  Google Scholar 

  • Hiscock KM (2005) Hydrogeology: principles and practice. Wiley, New York, p 389 (ISBN: 978019857634)

    Google Scholar 

  • Kelly WP (1951) Alkali soils—their formation properties and reclamation, 3rd edn. Reinhold Publication, New York, p 92

    Google Scholar 

  • Khaki M, Yusoff I, Ismalami N (2015) Application of the artificial neural network and neurofuzzy system for assessment of groundwater quality. Clean Soil Air Water 43(4):551–560

    Article  Google Scholar 

  • Kim MJ, Nriagu J, Haack S (2002) Arsenic species and chemistry in groundwater of southeast Michigan. Environ Pollut 120:379–390

    Article  Google Scholar 

  • Kim G, Lee KK, Park KS, Hwang DW, Yang HS (2003) Large submarine groundwater discharge (SGD) from a volcanic island. Geophys Res Lett 30:21

    Article  Google Scholar 

  • Liu W, Wei X, Li Q, Fan H, Duan H, Wu J, Giles-Hansen K, Zhang H (2016) Hydrological recovery in two large forested watersheds of southeastern China: the importance of watershed properties in determining hydrological responses to reforestation. Hydrol Earth Syst Sci 20:4747–4756

    Article  Google Scholar 

  • Melki F, Zouaghi T, Ben Chelbi M, Bédir M, Zargouni F (2010) Tectono-sedimentary events and geodynamic evolution of the Mesozoic and Cenozoic basins of the Alpine Margin, Gulf of Tunis, north-eastern Tunisia offshore. CR Geosci 342:741–753

    Article  Google Scholar 

  • Mohapatra PK, Vijay R, Pujari PR, Sundaray SK, Mohanty BP (2011) Determination of processes affecting groundwater quality in the coastal aquifer beneath Puri city, India: a multivariate statistical approach. Water Sci Technol 64(4):809–817

    Article  Google Scholar 

  • Mor S, Ravindra K, Dahiya RP, Chandra A (2006) Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environ Monit Assess 118:435–456. https://doi.org/10.1007/s10661-006-1505-7

    Article  Google Scholar 

  • Mosaferi M, Pourabbar M, Shakerkhatibi M, Fatehifar E, Belvasi M (2014) Quality modeling of drinking groundwater using GIS in rural communities, northwest of Iran. J Environ Health Sci Eng 12:99

    Article  Google Scholar 

  • Ntanganedzeni B, Elumalai V, Rajmohan N (2018) Coastal aquifer contamination and geochemical processes evaluation in Tugela catchment, South Africa geochemical and statistical approaches. Water 10(6):687. https://doi.org/10.3390/w10060687

    Article  Google Scholar 

  • Okiongbo KS, Douglas R (2015) Evaluation of major factors influencing the geochemistry of groundwater using graphical and multivariate statistical methods in Yenagoa city, Southern Nigeria. Appl Water Sci 5:27

    Article  Google Scholar 

  • Origin Pro (2015) Origin user guide, OriginLab ed. Northampton, MA, p 285

  • Papatheodorou G, Lambrakis N, Panagopoulos G (2007) Application of multivariate statistical procedures to the hydrochemical study of a coastal aquifer: an example from Crete, Greece. Hydrogeol Process 21(11):1482–1495

    Article  Google Scholar 

  • Petalas C, Lambrakis N (2006) Simulation of intense salinization phenomena in coastal aquifers—the case of the coastal aquifers of Thrace. J Hydrol 324(1–4):51–64

    Article  Google Scholar 

  • Raghunath HM (1987) Groundwater. Wiley Eastern Ltd., New Delhi

    Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils. In: Agricultural handbook 60. USDA, Washington DC, p 160

    Google Scholar 

  • Rusydi FA (2018) Correlation between conductivity and total dissolved solid in various type of water: a review. IOP Conf Ser Earth Environ Sci 118:012019. https://doi.org/10.1088/1755-1315/118/1/012019

    Article  Google Scholar 

  • Salem ZE, Atwia MG, El-Horiny MM (2015) Hydrogeochemical analysis and evaluation of groundwater in the reclaimed small basin of Abu Mina, Egypt. Hydrogeol J 23:1781–1797. https://doi.org/10.1007/s10040-015-1303-9

    Article  Google Scholar 

  • Sebei A, Chaabani F, Souissi F, Abdeljaoued S (2004) Hydrologie et qualité des eaux de la nappe de Grombalia (Tunisie nord-orientale). Sécheresse 15:159–166

    Google Scholar 

  • Smith BK, Smith JA, Baeck ML, Miller AJ (2015) Exploring storage and runoff generation processes for urban flooding through a physically based watershed model. Water Resour Res 51(3):1552–1569

    Article  Google Scholar 

  • Taylor EW (1958) The examination of water and water supplies. Church Hill Ltd., UK

    Google Scholar 

  • Thivya C, Chidambaram S, Rao MS, Thilagavathi MV, Manikanda S (2017) Assessment of fluoride contaminations in groundwater of hard rock aquifers in Madurai district, Tamil Nadu (India). Appl Water Sci 7:1011. https://doi.org/10.1007/s13201-015-0312

    Article  Google Scholar 

  • Tlili-Zrelli B, Hamzaoui-Azaza F, Gueddari M, Bouhlila R (2013) Geochemistry and quality assessment of groundwater using graphical and multivariate statistical methods. A case study: Grombalia phreatic aquifer (Northeastern Tunisia). Arabian J Geosci 6(9):3545–3561

    Article  Google Scholar 

  • Trabelsi F, Tarhouni J, Ben Mammou A, Ranieri G (2013) GIS-based subsurface databases and 3-D geological modeling as a tool for the set up of hydrogeological framework: Nabeul-Hammamet coastal aquifer case study (Northeast Tunisia). Environ Earth Sci 70:2087–2105. https://doi.org/10.1007/s12665-011-1416-y

    Article  Google Scholar 

  • Tziritis E, Skordas K, Kelepertsis A (2016) The use of hydrogeochemical analyses and multivariate statistics for the characterization of groundwater resources in a complex aquifer system. A case study in Amyros River basin, Thessaly, central Greece. Environ Earth Sci 75:339. https://doi.org/10.1007/s12665-015-5204-y

    Article  Google Scholar 

  • Wang Y, Jiao JJ (2012) Origin of groundwater salinity and hydrogeochemical processes in the confined Quaternary aquifer of the Pearl River Delta China. J Hydrol 438–439:112–124. https://doi.org/10.1016/j.jhydrol.2012.03.008

    Article  Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality, V.1. Recommendations. World Health Organization, Geneva (ISBN: 9789241548151)

    Google Scholar 

  • Wilcox LV (1995) Classification and use of irrigation water. US Department of Agriculture. Washington Dc, p 19

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Gunter Dörhöfer, Editor-in-Chief of the Journal of Environmental Earth Sciences, the associate editor who handled this manuscript and the anonymous reviewers for their constructive review and useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelaziz Sebei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebei, A., Slama, T. & Helali, M.A. Hydrochemical characterization and geospatial analysis of groundwater quality in Cap Bon region, northeastern Tunisia. Environ Earth Sci 77, 557 (2018). https://doi.org/10.1007/s12665-018-7716-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7716-8

Keywords

Navigation