Skip to main content
Log in

Sensitivity of kersantite toughness to moisture: influence of the phyllosilicates

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Evolution of the fracture behavior of a magmatic rock, the Loperhet kersantite, is under study to have a better understanding of the scaling effect occurring at the surface of monumental stone. A fracture mechanics approach is proposed to measure the ability to withstand a crack initiation and to observe the fracture surfaces after propagation. The influence of water saturation and moisture is considered and dependency of toughness with water vapor pressure is determined during humidification and drying. Results indicate that kersantite toughness decreases when moisture content increases. This is related to clay phases and phyllosilicates, involved in the swelling and identified as the weakness phases of the stone. Indeed, it appears that evolution of toughness and crack paths are related to the mineralogical weathering of these water-sensitive phases. Mineralogical microdamage due to moisture variations is involved in the evolution of the macroscopic mechanical behavior of kersantite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • ASTM (2010) ASTM standard D4404-10 standard test method for deterioration of pore volume and pore volume distribution of soil and rock by mercury intrusion porosimetry, West Conshohocken

  • Atkinson BK (1980) Stress corrosion and the rate-dependent tensile failure of a fine-grained quartz rock. Tectonophysics 60(3):281–290

    Article  Google Scholar 

  • Bernabé E (1996) Mécanismes d’altération des monuments historiques en environnement océanique et rural. Thesis. Aix-Marseille University, Marseille

    Google Scholar 

  • Brindley G, Brown G (1980) Crystals structures of clay minerals and their X-ray identification. Mineralogical Society, London

    Book  Google Scholar 

  • Bromblet P, Bernabé E, Vergès-Belmin V (1996) Petrophysical investigations on the origin of scaling of a microgranular magmatic rock associated to granite in the monuments from Brittany (France). In: Report No. 5 on Degradation and conservation of granitic rocks in monuments. Protection and conservation of European cultural heritage. Workshop in Santiago de Compostela, pp 73–78

  • Erguler Z, Ulusay R (2009) Water-induced variations in mechanical properties of clay bearing rocks. Int J Rock Mech Min Sci 46(2):355–370

    Article  Google Scholar 

  • Funatsu T, Seto M, Shimada H, Matsui K, Kuruppu M (2004) Combined effects of increasing temperature and confining pressure on the fracture toughness of clay bearing rocks. Int J Rock Mech Min Sci 41(6):927–938

    Article  Google Scholar 

  • Hirschwald J (1908) Die Prüfung der natürlichen Bausteine auf ihre Wetterbeständigkeit. Verlag von Wilhelm Ernst and Sohn, Berlin

    Google Scholar 

  • ICOMOS (2008) Illustrated glossary on stone deterioration patterns. In: International Scientific Committee for Stone (ISCS). ICOMOS and ISCS, Paris

    Google Scholar 

  • ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. Rapport technique. International Society of Rock Mechanics, Salzburg

    Google Scholar 

  • Jimenez-Gonzalez I, Rodriguez-Navarro C, Scherer G (2008) Role of clay minerals in the physicomechanical deterioration of sandstone. J Geophys Res 113:F02021

    Article  Google Scholar 

  • Kataoka M, Obara Y, Kuruppu M (2014) Estimation of fracture toughness of anisotropic rocks by semi-circular bend (SCB) tests under water vapor pressure. Rock Mech Rock Eng 48(4):1353–1367

    Article  Google Scholar 

  • Kuruppu M, Obara Y, Kataoka M (2010) Determination of fracture toughness of anisotropic rocks under water vapor pressure by semi-circular bend (SCB) test. In: Topal E, Kuruppu M (eds) Mine planning and equipment selection. The Australasian Institute of Mining and Metallurgy, Melbourne, pp 599–610

    Google Scholar 

  • Lim I, Johnston I, Choi S (1993) Stress intensity factor for semi-circular specimens under three-point bending. Eng Fract Mech 44:363–382

    Article  Google Scholar 

  • Mertz J-D, Guivarc’h M, Pagnin P (2012) Dilation behaviour of lime mortars for restoration work: application to the compatibility of cracked stone reassembling. Eur J Environ Civil Eng 16(5):527–542

    Article  Google Scholar 

  • Nara Y, Kaneko K (2006) Sub-critical crack growth in anisotropic rock. Int J Rock Mech Min Sci 43(3):437–453

    Article  Google Scholar 

  • Nara Y, Morimoto K, Hiroyoshi N, Yonda T, Kaneko K, Benson PM (2012) Influence of relative humidity on fracture toughness of rock: Implications for subcritical crack growth. Int J Solids Struct 49(18):2471–2481

    Article  Google Scholar 

  • Ouchterlony F (1990) Fracture toughness testing of rock with core based specimens. Eng Fract Mech 35:351–366

    Article  Google Scholar 

  • Robert M, Bernabé M, Bromblet P, Jaunet AM, Vergès-Belmin V, PenvenMJ (1994) Identification of two alteration microsystems chemical and physical, causing granite and kersantite degradation in Brittany (France). In: Proceedings of the EC workshop on degradation and conservation of granitic rocks in monuments, 28–30 Nov 1994, Santiago de Compostela, pp 67–71

  • Ruedrich J, Bartelsen T, Dormann R, Siegesmund S (2010) Moisture expansion as a deterioration factor for sandstone used in buildings. Environ Earth Sci 63(7):1545–1564

    Google Scholar 

  • Scherer G, Jimenez-Gonzalez I (2005) Characterization of swelling in clay-bearing stone. Stone decay in the architectural environment. Geol Soc Am Spec Pap 390:51–61

    Google Scholar 

  • Siegesmund S, Snethlage R (2011) Stone in architecture: properties, durability. Springer, Berlin

    Book  Google Scholar 

  • Tiennot M (2017) Influence des proprieties physic-mécaniques des minéraux argileux dans l’altération de la pierre monumentale. Thesis. UPMC, Pittsburgh

    Google Scholar 

  • Tiennot M, Bourgès A (2016) Evaluation of small core-based specimens for characterization of stone deterioration. Int J Rock Mech Min Sci 84:69–73

    Google Scholar 

  • Tutluoglu L, Keles C (2011) Mode I fracture toughness determination with straight notched disk bending method. Int J Rock Mech Min Sci 48:1248–1261

    Article  Google Scholar 

  • Utagawa M, Seto M, Kosugi M, Katsuyama K, Matsui K (1999) The evaluation of fracture toughness of rock in wet and chemical condition. In: Proceedings of ’99 Japan-Korea joint symposium on rock engineering, Fukuoka, pp 573–578

  • Wangler T, Scherer G (2008) Clay swelling mechanism in clay-bearing sandstones. Environ Geol 56(3):529–534

    Article  Google Scholar 

  • Weiss T, Siegesmund S, Kirchner D, Sippel J (2004) Insolation weathering and hygric dilatation: two competitive factors in stone degradation. Environ Geol 46(3):402–413

    Google Scholar 

  • Wendler R, Snethlage E (1997) Moisture cycles and sandstone degradation. In: Baer N, Snethlage E (eds) Saving our architectural heritage: the conservation of historic stone structures. Elsevier, Chichester, pp 7–24

    Google Scholar 

Download references

Acknowledgements

This work was supported by French state funds managed by the ANR within the Investissements d’Avenir program under reference ANR-11-IDEX-0004-02, and more specifically within the framework of the Cluster of Excellence MATISSE led by Sorbonne Universités.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathilde Tiennot.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Stone in the Architectural Heritage: from quarry to monuments—environment, exploitation, properties and durability”, guest edited by Siegfried Siegesmund, Luís Sousa, and Rubén Alfonso López-Doncel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiennot, M., Mertz, JD. & Bourgès, A. Sensitivity of kersantite toughness to moisture: influence of the phyllosilicates. Environ Earth Sci 77, 483 (2018). https://doi.org/10.1007/s12665-018-7666-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7666-1

Keywords

Navigation