Skip to main content

Advertisement

Log in

Evidence of a water δ18O negative shift driven by intensive deep CO2 upflow at Shiwaga gas field (Rungwe, Tanzania)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Located on the flank of Ngozi volcanoes (Tanzania), the Shiwaga gas field is a spot of intense CO2(g) emanations. Physico-chemical measurements on different types of waters (rivers, puddles, and springs) as water and gas sampling were discontinuously performed over 10 years for equilibrated partial CO2 pressure calculations and stable isotopic analyses. The most striking result shows that meteoric H2O and deep originated CO2(g) exchanges are responsible for a negative 18O-shift of the studied waters in relation with waters electrical conductivity, pH, and pCO2eq changes. In spring waters, a maximum shift of − 11.2‰ in δ18O was observed and pCO2eq values up to 1196 mbar were computed. Although this trend has already been reported around the world, such extended shift is rarely measured and requires an important amount of CO2(g), with a CO2(g)/H2O ratio up more than 0.5 mol/mol. This approach is useful to better understand the hydro-geochemical processes involved in such environments. Moreover, this study evidences that an inventory as a monitoring of these gas fields are needed for the management of natural hazards and local resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barry PH, Hilton DR, Fischer TP, de Moor JM, Mangasini F, Ramirez C (2013) Helium and carbon isotope systematics of cold “mazuku” CO2 vents and hydrothermal gases and fluids from Rungwe Volcanic Province, southern Tanzania. Chem Geol 339:141–156

    Article  Google Scholar 

  • Bottinga Y (1968) Calculation of fractionation factors for carbon and oxygen isotopic exchange in the system calcite–carbon dioxide–water. J Phys Chem 72(3):800–808

    Article  Google Scholar 

  • Branchu Ph, Bergonzini L, Delvaux D, De Batist M, Golubev V, Benedetti M, Klerkx J (2005) Tectonic, climatic and hydrothermal control on sedimentation and water chemistry of northern Lake Malawi (Nyasa), Tanzania. J Afr Earth Sci 43:433–446

    Article  Google Scholar 

  • Brenninkmeijer CAM, Kraft P, Mook WG (1983) Oxygen isotope fractionation between CO2 and H2O. Chem Geol 1:181–190

    Article  Google Scholar 

  • Broecker HC, Siems W (1984) The role of bubble for gas transfer from water to air at higher wind speeds experiments in the wind-wave facility in Hamburg. In: Brutsaert W, Jirka GH (eds) Gas transfer at water surfaces, vol 2. Springer, Dordrecht, pp 229–238

    Chapter  Google Scholar 

  • Cartwright I, Weaver T, Tweed S, Ahearne D, Cooper M, Czapnik K, Tranter J (2002) Stable isotope geochemistry of cold CO2-bearing mineral spring waters, Daylesford, Victoria, Australia: sources of gas and water and links with waning volcanism. Chem Geol 185:71–91. https://doi.org/10.1016/S0009-2541(01) 00397–7

    Article  Google Scholar 

  • Chiodini G, Allard P, Caliro S, Parello F (2000) 18O exchange between steam and carbon dioxide in volcanic and hydrothermal gases: implication for the source of water. Geochim Cosmochim Acta 64(14):2479–2488

    Article  Google Scholar 

  • Chiodini G, Caliro S, De Martino P, Avino R, Gherardi F (2012) Early signals of new volcanic unrest at Capi Flegrei caldera ? Insights from geochemical data and physical simulations. Geology 40:943–946

    Article  Google Scholar 

  • D’Amore F, Panichi C (1987) Geochemistry in geothermal exploration. Appl Geo Therm 9:69–89

    Google Scholar 

  • Darling WG (1998) Hydrothermal hydrocarbon gases: 2, application in the East African Rift system. Appl Geochem 13(7):825–840

    Article  Google Scholar 

  • De Moor JM, Fischer TP, Sharp ZD, Hilton DR, Barry PH, Mangasini F, Ramirez C (2013) Gas chemistry and nitrogen isotope compositions of cold mantle gases from Rungwe Volcanic Province, southern Tanzania. Chem Geol 339:30–42

    Article  Google Scholar 

  • Delalande M, Bergonzini L, Branchu Ph, Filly A, Williamson D (2008) Hydroclimatic and geothermal controls on the salinity of Mbaka Lakes (SW Tanzania): limnological and paleolimnological implications. J Hydrol 359:274–286

    Article  Google Scholar 

  • Delalande M, Bergonzini L, Gherardi F, Guidi M, André L, Abdallah I, Williamson D (2011) Fluid geochemistry of natural manifestations from the Southern Poroto–Rungwe hydrothermal system (Tanzania): preliminary conceptual model. J Volcanol Geotherm Res 199(1–2):127–141, ISSN 0377 – 0273

    Article  Google Scholar 

  • Delalande-Le Mouëllic M, Gherardi F, Williamson D, Kajula S, Kraml M, Noret A, Abdallah I, Mwandapile E, Massault M, Majule A, Bergonzini L (2015) Hydrogeochemical features of Lake Ngozi (SW Tanzania). J Afr Earth Sci 103:153–167 (ISSN 1464-343X)

    Article  Google Scholar 

  • Ebinger C, Klerkx J, Delvaux D, Wüest A (1993) Evaluation of natural hazards in the northern part of the Malawi rift (Tanzania). Mus Roy Afr Centr Tervuren (Belg) Dépt Géol Min Rapp Ann 1991–1992:83–86

    Google Scholar 

  • Epstein S, Mayeda T (1953) Variation of O18 content of waters from natural sources. Geochim Cosmochim Acta 4:(5):213–224

    Article  Google Scholar 

  • Fontijn K, Ernst GGJ, Elburg MA, Williamson D, Abdallah E, Kwelwa S, Mbede E, Jacobs P (2010) Holocene explosive eruptions in the Rungwe Volcanic Province, Tanzania. J Volcanol Geotherm Res 196(1–2):91–110 (ISSN 0377-0273)

    Article  Google Scholar 

  • Fontijn K, Williamson D, Mbede E, Ernst GGJ (2012) The Rungwe volcanic province, Tanzania: a volcanological review. J Afr Earth Sci 63:12–31. (ISSN 1464-343X)

    Article  Google Scholar 

  • Frondini F, Caliro S, Cardellini C, Chiodini G, Morgantini N (2009) Carbon dioxide degassing and thermal energy release in the Monte Amiata volcanic-geothermal area (Italy). Appl Geochem 24(5):860 875

    Article  Google Scholar 

  • Gemery PA, Trolier M, White JWC (1996) Oxygen isotope exchange between carbon dioxide and water following atmospheric sampling using glass flasks. J Geophys Res 101:14415–14420

    Article  Google Scholar 

  • Gonfiantini R (1986) Environmental isotopes in lake studies. In: Fritz P, Fontes JC (eds) The terrestrial environment, B, handbook of environmental isotope geochemistry. Elsevier, Amsterdam, pp 113–168. https://doi.org/10.1016/B978-0-444-90842225-5.50008-5 (Chap. 3)

    Google Scholar 

  • Hards VL (2005) Volcanic contributions to the global carbon cycle. British Geological Survey, Nottingham, UK (British Geological Survey Occasional Publication, No. 10)

    Google Scholar 

  • Harkin DA (1960) The Rungwe volcanics at the northern end of Lake Nyasa, Mem II. Geol Surv Tanganyika, Dodoma

    Google Scholar 

  • Hilton DR, Halldórsson SA, Barry PH, Fischer TP, de Moor JM, Ramirez CJ, Mangasini F, Scarsi P (2011) Helium isotopes at Rungwe Volcanic Province, Tanzania, and the origin of East African Plateaux. Geophys Res Lett 38:L21304. https://doi.org/10.1029/2011GL049589

    Article  Google Scholar 

  • Jähne B, Münnich KO, Bosinger R, Dutzi A, Huber W, Libner P (1987) On parameters influencing air–water gas exchange. J Geophys Res 92:1937–1949

    Article  Google Scholar 

  • Kabaka KT, Mnjokava TT, Kajugus SI (2016) Geothermal development in Tanzania a country update. In: Proceedings 6th African Rift geothermal conference, Addis Ababa, Ethiopia

  • Kalerkamp U, Schaumann G, Ndonde PB, Chiragwile SA, Mwano JM (2010) Surface exploration of a viable geothermal resource in Mbeya Area, SW Tanzania. Part II: geophysics. In: Proceedings, 4th world geothermal congress, Bali, Indonesia

  • Karolyte R, Serno S, Johnson G, Gilfillan S (2017) The influence of oxygen isotope exchange between CO2 and H2O in natural CO2-rich spring waters: implications for geothermometry. Appl Geochem. https://doi.org/10.1016/j.apgeochem.2017.06.012

    Google Scholar 

  • Kraml M, Mnjokava TT, Mayalla JW, Kabaka K (2010) Surface Exploration of a viable geothermal resource in Mbeya Area, SW Tanzania. Part II: geochemistry. In: Proceedings, 4th world geothermal congress, Bali, Indonesia

  • Kraml M, Ochmann N, Leible D, Kling T, Chiragwile SA, Jodocy M, Kreuster H and GPT exploration Team (2014) Results of the pre-feasibility study on Ngozi geothermal project in Tanzania. In: Proceedings of the 5th African Rift geothermal conference, Arusha, Tanzania

  • Lécuyer C, Gardien V, Rigaudier T, Fourel F, Martineau F, Cros A (2009) Oxygen isotope fractionation and equilibration kinetics between CO2 and H2O as a function of salinity of aqueous solutions. Chem Geol 264:122–126

    Article  Google Scholar 

  • Nivet F, Bergonzini L, Diemer L, Mathé P-E, Kajula S, Ngingo P, Mwasomba S, Noret A, Majule A, Williamson D (2015) RESON: 3-year records of rainfall isotopic composition from 3 stations of the Rungwe Volcanic Province (SW Tanzania). In: tropical deserts and lakes through time—symposium in memory of Françoise Gasse, 2015, Aix-en-Provence, France, July

  • Nivet F, Bergonzini L, Mathé P-E, Noret A, Monvoisin G, Majule A, Williamson D (2018) Influence of the balance of the Intertropical Front on seasonal variations of rainfall isotopic compositions at Kisiba Masoko (Rungwe Volcanic Province, SW, Tanzania). Isotopes Environ Health Stud. https://doi.org/10.1080/10256016.2018.1443923

    Google Scholar 

  • Panichi C, Ferrara GC, Gonfiantini R (1977) Isotope geothermometry in the Larderello geothermal field. Geothermics 5:81–88

    Article  Google Scholar 

  • Plummer LN, Busenberg E (1982) The solubilities of calcite, aragonite and vaterite in CO2–H2O solutions between 0 and 90 °C, and an evaluation of the aqueous model for the system CaCO3–CO2–H2O. Geochim Cosmochim Acta 46(6):1011–1040. https://doi.org/10.1016/0016-7037(82)90056-4

    Article  Google Scholar 

  • Rozanski K, Araguas-Araguas L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. In: Swart PK, Lohmann KC, McKenzie J, Savin S (eds) Climate change in continental isotopic records. American Geophysical Union, Washington DC, pp 1–36

    Google Scholar 

  • Smets B, Tedesco D, Kervyn F, Kies A, Vaselli O, Yalire MM (2010) Dry gas vents (”mazuku”) in Goma region (North Kivu, Democratic republic of Congo): formation and risk assessment. J Afr Earth Sci 58(5):787–798

    Article  Google Scholar 

  • Sorey M, Farrar C, Gerlach T, McGee K, Evans W, Colvard E, Hill D, Bailey R, Rogie J, Hendley IIJ, Stauffer P (2000) Invisible CO2 gas killing trees at Mammoth Mountain, California U.S. Geological Survey Fact Sheet, pp 172–96

  • Vaselli O, Capaccioni B, Tedesco D, Tassi F, Yalire MM, Kasareka MC (2002) The “evil’s winds” (mazukus) at Nyiragongo Volcano (Democratic Republic of Congo). Acta Vulcanol 14–15:123–128

    Google Scholar 

  • Yurtsever Y, Gat JR (1981) Atmospheric waters. In: Gat JR, Gonfiantini R (eds) Stable isotope hydrology: deuterium and oxygen-18 in the water cycle, vol 210. International Atomic Energy Agency, Vienna (Austria), pp 103–142

    Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Institute of Resource Assessment (IRA) of University of Dar es Salaam. The Masoko Lwifwa community is thanked for assisting us during fieldwork and Aurélie Noret for her help in laboratory work. We express our appreciation to Dr. Orlando Vaselli for his helpful comments on the first versions of the manuscript. This research was supported by the CLEHA project of the ECLIPSE program (Institut National des Sciences de l’Univers), the French Embassy and the Tanzanian Commission of Science and Technology (COSTECH). This is a publication of the Rungwe Environmental Science Observatory Network (RESON).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuëlla Delalande-Le Mouëllic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergonzini, L., Delalande-Le Mouëllic, M., Gherardi, F. et al. Evidence of a water δ18O negative shift driven by intensive deep CO2 upflow at Shiwaga gas field (Rungwe, Tanzania). Environ Earth Sci 77, 497 (2018). https://doi.org/10.1007/s12665-018-7665-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7665-2

Keywords

Navigation