Skip to main content

Advertisement

Log in

Ra and Rn isotopes as natural tracers of submarine groundwater discharge in the patagonian coastal zone (Argentina): an initial assessment

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Submarine groundwater discharge (SGD) is herein recognized as a significant pathway of material transport from land to the coastal SW Atlantic Ocean and thus, it can be a relevant factor affecting the marine biogeochemical cycles in the region. This paper focuses on the initial measurements of 226Ra, 228Ra and 222Rn made in Patagonia’s coastal zone of Chubut and Santa Cruz provinces (42°S–48°S, Argentina). 226Ra activity ranged from 2.9 to 73.5 dpm 100 L−1, and 228Ra activity ranged from 11.9 to 311.0 dpm 100 L−1 in groundwater wells. The radium activities found in Patagonia’s marine coastal regions and adjacent shelf indicate significant enrichment throughout the coastal waters. Groundwater samples presented the largest 222Rn activity and ranged from 2.66 to 1083 dpm L−1. Conversely, in the coastal marine environment, the 222Rn activity ranged from 1.03 to 6.23 dpm L−1. The Patagonian coastal aquifer showed a larger enrichment in 228Ra than in 226Ra, which is a typical feature for sites where SGD is dominant, probably playing a significant role in the biogeochemistry of these coastal waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez MP, Weiler NE, Hernández MA (2009) Linking geomorphology and hydrodynamics: a case study from Península Valdés, Patagonia, Argentina. Hydrogeol J 18(2):473–486

    Article  Google Scholar 

  • Andrade CFF (2010) Conexões e interações entre a água superficial e subterrânea na região costeira do extremo sul do Brasil. Tese de doutorado apresentada ao Programa de pós-graduação em oceanografia Física, Química e Geológica. p 177

  • Bonotto DM (2011) Natural radionuclides in major aquifer systems of the Paraná sedimentary basin, Brazil. Appl Radiat Isot 69:1572–1584

    Article  Google Scholar 

  • Bonotto DM, Bueno TO (2008) The natural radioactivity in Guarani aquifer groundwater, Brazil. Appl Radiat Isot 66:1507–1522

    Article  Google Scholar 

  • Burnett WC, Dulaiova H (2003) Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. J Environ Radioact 69:21–35

    Article  Google Scholar 

  • Burnett WC, Dulaiova H (2006) Radon as a tracer of submarine groundwater discharge into a boat basin in Donnalucata, Sicicly. Cont Shelf Res 26(7):862–873

    Article  Google Scholar 

  • Burnett WC, Cable JE, Corbett DR, Chanton JP (1996) Tracing groundwater flow into surface waters using natural 222Rn. In: Buddemeier RW (eds) Groundwater discharge in the coastal zone: proceedings of an international symposium. LOICZ IGBP. LOICZ/R&S/96-8, iv + 179 pp. LOICZ, Texel, The Netherlands, pp 22–28

  • Burnett WC, Kim G, Lane-Smith D (2001) A continuous radon monitor for assessment of radon in coastal ocean waters. J Radioanal Nucl Chem 249:167–172

    Article  Google Scholar 

  • Burnett WC, Bokuniewicz H, Huettel M, Moore WS, Taniguchi M (2003) Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66:3–33

    Article  Google Scholar 

  • Burnett WC, Aggarwal PK, Aureli A, Bokuniewicz H, Cable JE, Charette MA, Kontar E, Krupa S, Kulkarni KM, Loveless A, Moore WS, Oberdorfer JA, Oliveira J, Ozyurt N, Povinec P, Privitera AMG, Rajar R, Ramessur RT, Scholten J, Stieglitz T, Taniguchi M, Turner JV (2006) Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci Total Environ 367(2–3):498–543

    Article  Google Scholar 

  • Burnett WC, Peterson R, Moore WS, de Oliveira J (2008) Radon and radium isotopes as tracers of submarine groundwater discharge e Results from the Ubatuba, Brazil SGD assessment intercomparison. Estuar Coast Shelf Sci 76:501–511

    Article  Google Scholar 

  • Burnett WC, Peterson RN, Santos IR, Hicks RW (2010) Use of automated radon measurements for rapid assessment of groundwater flow into Florida streams. J Hydrol 380:298–304

    Article  Google Scholar 

  • Cable JE, Martin JB, Swarzenski PW, Lindenberg MK, Steward J (2004) Advection within shallow pore waters of a coastal lagoon, Florida. Ground Water 42:1011–1020

    Article  Google Scholar 

  • Chanyotha S, Kranord C, Burnett WC, Lane-Smith DR, Simko J (2014) Prospecting for groundwater discharge in the canals of Bangkok via natural radon and thoron. J Hydrol 519:1485–1492

    Article  Google Scholar 

  • Charette MA, Morris PJ, Henderson PB, Moore WS (2015) Radium isotope distributions during the U.S. GEOTRACES North Atlantic cruises. Mar Chem 177:184–195

    Article  Google Scholar 

  • Charpy-Roubaud CJ, Charpy LJ, Maestrini SY (1982) Fetilité des eaux côtières nord-patagoniques: facteurs limitant la production du phytoplancton et potentialités d´exploitation myticole. Oceanol Acta 5(2):179–188

    Google Scholar 

  • Depetris PJ, Pasquini AI (2008) Riverine flow and lake level variability in southern South America. EOS 89(28):254–255

    Article  Google Scholar 

  • Depetris PJ, Gaiero DM, Probst JL, Hartmann J, Kempe S (2005) Biogeochemical output and typology of rivers draining Patagonia’s Atlantic seabord. J Coast Res 21:835–844

    Article  Google Scholar 

  • Estación Meteorológica del CENPAT (EMC) (2014) web page: http://www.cenpat.edu.ar/fisicambien/climaPM.htm. Accessed 6 Nov 2015

  • Esteves JL, Santinelli NH, Sastre AV, Diaz R, Rivas O (1992) A dinoflagellate bloom and P.S.P. production associated with upwelling in Golfo Nuevo, Patagonia, Argentina. Hydrobiologia 242:115–122

    Article  Google Scholar 

  • Gaiero DM, Probst JL, Depetris PJ, Leleyter L, Kempe S (2002) Riverine transfer of heavy metals from Patagonia to the Southwesten Atlantic Ocean. Reg Environ Change 3:51–64

    Article  Google Scholar 

  • Gaiero DM, Probst JL, Depetris PJ, Bidart S, Leleyter L (2003) Iron and other transition metals in Patagonian riverborne and windborne materials: geochemical control and transport to the southern South Atlantic Ocean. Geochim Cosmochim Acta 67:3603–3623

    Article  Google Scholar 

  • Gaiero DM, Depetris PJ, Probst JL, Bidart S, Leleyter L (2004) The signature of river- and wind-borne materials exported from Patagonia to the southern latitudes: a view from REEs and implications for paleoclimatic interpretations. Earth Planet Sci Lett 219:357–376

    Article  Google Scholar 

  • Gaiero DM, Brunet F, Probst JL, Depetris PJ (2006) A uniform isotopic and chemical signature of dust exported from Patagonia: rock sources and occurrence in southern environments. Chem Geol 238:107–120

    Article  Google Scholar 

  • Garcia-Solsona E, Garcia-Orellana J, Masqué P, Garcés E, Radakovitch O, Mayer A, Estradé S, Basterretxea G (2010) An assessment of karstic submarine groundwater and associated nutrient discharge to a Mediterranean coastal area (Balearic Islands, Spain) using radium isotopes. Biogeochemistry 97:211–229

    Article  Google Scholar 

  • Gil MN, Torres AI, Marinho CH, Esteves JL (2014) Caracterización de sedimentos costeros y flujos bentónicos en una Bahía Patagónica de Argentina: Antes y después de la eliminación del efluente urbano. In: Marcovecchio JE, Botté SE, Freije RH (eds) Procesos Geoquímicos de la superficie en América Latina. Bahía Blanca, Buenos Aires, pp 22–37

    Google Scholar 

  • Godoy JM, Souza TA, Godoy MLDP, Moreira I, Carvalho ZL, Lacerda LD, Fernandes FC (2013) Groundwater and surface water quality in a coastal by with negligible fresh groundwater discharge: Arraial do Cabo, Brazil. Mar Chem 156:85–97

    Article  Google Scholar 

  • Haller M, Monti A, Meister C (2001) Hoja Geológica 4363-I, Península Valdés (Geological Sheet 4363-I, Península Valdés) SEGEMAR Buenos Aires, Argentina

  • Kroeger KD, Charette MA (2008) Nitrogen biogeochemistry of submarine groundwater discharge. Limnol Oceanogr 53(3):1025–1039

    Article  Google Scholar 

  • Kwon EY, Kim G, Primeau F, Moore WS, Cho HM, DeVries T, Sarmiento JL, Charette MA, Cho YK (2014) Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model. Geophys Res Lett. https://doi.org/10.1002/2014GL061574

    Google Scholar 

  • Milliman JD, Farnsworth KL (2011) River discharge to the coastal ocean. Cambridge UP, Cambridge

    Book  Google Scholar 

  • Moore WS (1976) Sampling radium-228 in the deep ocean. Deep-Sea Res 23:647–651

    Google Scholar 

  • Moore WS (1984) Radium isotope measurements using germanium detectors. Nucl Instrum Methods 223:407–411

    Article  Google Scholar 

  • Moore WS (1996) Large ground water inputs to coastal waters revealed by 226Ra enrichments. Nature 380:612–614

    Article  Google Scholar 

  • Moore WS (1999) The subterranean estuary: a reaction zone of ground water and sea water. Mar Chem 65(1–2):111–125

    Article  Google Scholar 

  • Moore WS (2003) Sources and fluxes of submarine groundwater discharge delineated by radium isotopes. Biogeochemistry 66:75–93

    Article  Google Scholar 

  • Moore WS (2006) Radium isotopes as tracers of submarine groundwater discharge in Sicily. Cont Shelf Res 26:852–861

    Article  Google Scholar 

  • Moore WS (2010) A reevaluation of submarine groundwater discharge along the southeastern coast of North America. Glob Biogeochem Cycl 24:GB4005. https://doi.org/10.1029/2009GB003747

    Article  Google Scholar 

  • Moore WS, Shaw TJ (2008) Fluxes and behavior of radium isotopes, barium, and uranium in seven Southeastern US rivers and estuaries. Mar Chem 108:236–254

    Article  Google Scholar 

  • Niencheski LFH, Windom HL, Moore WS, Jahnke RA (2007) Submarine groundwater discharge of nutrients to the ocean along a coastal lagoon barrier, Southern Brazil. Mar Chem 106:546–561

    Article  Google Scholar 

  • Pasquini AI, Depetris PJ (2007) Discharge trends and flow dynamics of South American rivers draining the southern Atlantic seaboard: an overview. J Hydrol 333:385–399

    Article  Google Scholar 

  • Pasquini AI, Depetris PJ, Gaiero DM, Probst JL (2005) Material sources, chemical weathering, and physical denudation in the Chubut River (Patagonia, Argentina): implications for Andean rivers. J Geol 113:451–469

    Article  Google Scholar 

  • Pasquini AI, Lecomte KL, Depetris PJ (2008) Climate change and recent water level variability in Patagonian proglacial lakes, Argentina. Glob Planet Change 63:290–298

    Article  Google Scholar 

  • Peterson RN, Burnett WC, Taniguchi M, Chen J, Santos IR, Ishitobi T (2008) Radon and radium isotope assessment of submarine groundwater discharge in the Yellow River delta, China. J Geophys Res 113:C09021. https://doi.org/10.1029/2008JC004776

    Article  Google Scholar 

  • Peterson RN, Santos IS, Burnett WC (2010) Evaluating groundwater discharge to tidal rivers based on a Rn-222 time-series approach. Estuar Coast Shelf Sci 86:165–178

    Article  Google Scholar 

  • Povinec PP, Burnett WC, de Oliveira J (2008) Submarine groundwater discharge studies along the Ubatuba coastal area in south-eastern Brazil. Estuar Coast Shelf Sci 76:455–456

    Article  Google Scholar 

  • Rodellas V, Garcia-Orellana J, Masquéa P, Feldmane M, Weinsteine Y (2015) Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea. Proc Natl Acad Sci USA 112(13):3926–3930

    Article  Google Scholar 

  • Santinelli N, Sastre V, Esteves JL (2002) Episodios de algas nocivas en la Patagonia Argentina. In: Sar EA, Ferrario ME, Reguera B (eds) Floraciones Algales Nocivas en el Cono Sur Americano. Capítulo 8. Instituto Español de Oceanografía, pp 197–208

  • Santos IR, Burnett WC, Chanton JP, Mwashote B, Suryaputra IGNA, Dittmar T (2008) Nutrient biogeochemistry in a Gulf of Mexico subterranean estuary and groundwater-derived fluxes to the coastal ocean. Limnol Oceanogr 53:705–718

    Article  Google Scholar 

  • Santos IR, Dimova N, Peterson RN, Mwashote B, Chanton JP, Burnett WC (2009) Extended time series measurements of submarine groundwater discharge tracers (222Rn and CH4) at a coastal site in Florida. Mar Chem 113:137–147

    Article  Google Scholar 

  • Santos IR, Bradley DE, Huettel M (2012) The driving forces of porewater and groundwater flow in permeable coastal sediments: a review. Estuar Coast Shelf Sci 98:1–15

    Article  Google Scholar 

  • Sastre AV, Santinelli NH, Marino G, Solis ME, Pujato L, Ferrario ME (2007) First detection of domoic acid produced by Pseudonitzschia species, Chubut coastal waters, Patagonia, Argentina. Harmful Algae News 34:12–14

    Google Scholar 

  • Schlüter M (2002) Fluid flow in continental margin sediments. In: Wefer G, Billet D, Hebbeln D, Jorgensen BB, Schlüter M, Van Weering T (eds) Ocean margin system. Springer, Berlin, pp 205–217

    Chapter  Google Scholar 

  • Schmidt C, Hanfland C, Regnier P, Van Cappellen P, Schlüter M, Knauthe U, Stimac I, Geibert W (2011) 228Ra, 226Ra, 224Ra and 223Ra in potential sources and sinks of land-derived material in the German Bight of the North Sea: implications for the use of radium as a tracer. Geo-Mar Lett 31:259–269

    Article  Google Scholar 

  • Servicio de Hidrografia Naval—SHN (2015) www.hidro.gov.ar/oceanografia/tmareas/form_tmareas.asp. Accessed 6 Nov 2015

  • Swarzenski PW, Burnett WC, Greenwood WJ, Herut B, Peterson R, Dimova N, Shalem Y, Yechieli Y, Weinstein Y (2006) Combined time-series resistivity and geochemical tracer techniques to examine submarine groundwater discharge at Dor Beach, Israel. Geophys Res Lett 33:L24405

    Article  Google Scholar 

  • Swarzenski PW, Dulai H, Kroeger KD, Smith CG, Dimova N, Storlazzi CD, Prouty NG, Gingerich SB, Glenn CR (2017) Observations of nearshore groundwater discharge: Kahekili Beach Park submarine springs, Maui, Hawaii. J Hydrol 11:147–165

    Google Scholar 

  • Tonini M, Palma E, Rivas AL (2006) Modelo de alta resolución de los golfos Patagónicos. Asoc Argent Mec Comput XXV:1441–1460

    Google Scholar 

  • United Nations Educational, Scientific and Cultural Organization. UNESCO (1999) http://whc.unesco.org/en/list/937. Accessed 13 May 2016

  • United Nations Educational, Scientific and Cultural Organization. UNESCO (2014) Man and the Biosphere Programme. http://www.unesco.org/new/en/natural-sciences/environment/ecological-sciences/. Accessed 22 Sept 2016

  • Windom HL, Moore WS, Niencheski LFH, Jahnke RA (2006) Submarine groundwater discharge: a large, previously unrecognized source of dissolved iron to the South Atlantic Ocean. Mar Chem 102:252–266

    Article  Google Scholar 

  • Zektzer IS, Ivanov VA, Meskheteli AV (1973) The problem of direct groundwater discharge to the seas. J Hydrol 20:1–36

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank the staff of the Chemical Oceanography and Environmental Pollution Laboratory of CESIMAR - CONICET - CCT CENPAT (Argentina), and FURG’s Hydrochemistry Laboratory (Brazil) and CNPq (303672/2013-7). This study was funded by the Bilateral Cooperation Project between Argentina’s MINCyT and Brazil’s CAPES (Project BR/09/05) and also was partially supported by the Bilateral Cooperation Project between MINCyT-CAPES (Project BR/RED-1302). Authors are thankful for the constructive comments made by the anonymous reviewers of the manuscript and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Américo I. Torres.

Additional information

This article is a part of Topical Collection in Environmental Earth Sciences on IV RAGSU—Advances in Geochemistry of the Surface in Argentina, edited by Dr. Americo Iadran Torres and Dr. Pablo Jose Bouza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, A.I., Andrade, C.F., Moore, W.S. et al. Ra and Rn isotopes as natural tracers of submarine groundwater discharge in the patagonian coastal zone (Argentina): an initial assessment. Environ Earth Sci 77, 145 (2018). https://doi.org/10.1007/s12665-018-7308-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7308-7

Keywords

Navigation