Skip to main content
Log in

Soil metal pollution from former Zn–Pb mining assessed by geochemical and magnetic investigations: case study of the Bou Caid area (Tissemsilt, Algeria)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Former zinc and lead mines that have been operating for half a century are located in the massif of Bou Caid (Tissemsilt, Algeria). Hazardous heavy metals emitted from the mines are abundant in the surrounding soil and cause strong metal pollution in the region. This paper investigates the extent of lead and zinc mine activity derived pollution by characterizing both magnetic and geochemical properties of samples collected in the vicinity of the mines. The results of the magnetic study show the coexistence of magnetic minerals such as magnetite, hematite and goethite. Analyses on surface soils and weathered rocks suggest that hematite and goethite have ore-related lithogenic origins. Magnetic susceptibility shows a positive correlation with lead content when present in low-to-medium concentrations (< ~500 mg/kg). At higher lead concentrations, there is no correlation with magnetic susceptibility. The relationship between magnetic susceptibility and zinc content is not straightforward. These observations are explained by the higher affinity of Pb to iron oxides at lower pollution levels and their preferential bonding to carbonates when Pb and Zn contents are extremely high, as demonstrated by Iavazzo et al. (J Geochem Explor 113:56–67, 2012) in a study of former Zn–Pb mine in Morocco. Based on the general features of the spatial maps of field-measured magnetic susceptibility, mass-specific magnetic susceptibility, Pb and Zn contents, it is concluded that field magnetic measurements provide a good qualitative proxy of pollution spread out of the mining galleries, while laboratory measurements afford a more detailed investigation of the links between iron oxides and the main heavy metals in the ore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • ADEME (2004) Elimination des déchets générés par les traitements anticancéreux. Bilan des études R et D, Guide et Recommandations. Connaître pour agir, ADEME éditions

  • Adriano D (2001) Trace elements in terrestrial environments. Biogeochemistry, Bioavailability, and Risks of Metals. Springer–Verlag, New York, p 867. ISBN 978-0-387-21510-5

  • Butler RF (1992) Paleomagnetism: magnetic domains to geologic terranes. Blackwell Sciences. http://www.geo.arizona.edu/Paleomag/book/

  • Canbay M, Aydin A, Kurtulus C (2010) Magnetic susceptibility and heavy-metal contamination in topsoils along the Izmit Gulf coastal area and IZAYTAS (Turkey). J Appl Geophys 70:46–57

    Article  Google Scholar 

  • Cao L, Appel E, Hu S, Yin G, Lin H, Rösler W (2015) Magnetic response to air pollution recorded by soil and dust-loaded leaves in a changing industrial environment. Atmos Environ 119:304–313

    Article  Google Scholar 

  • Cornell R, Schwertmann U (2003) The iron oxides. Structure, properties, reactions, occurrence and uses. Wiley-VCH GmbH & Co KGaA

  • Dankoub Z, Ayoubi S, Khademi H, Lu Sh-G (2012) Spatial Distribution of Magnetic Properties and Selected Heavy Metals in Calcareous Soils as Affected by Land Use in the Isfahan Region, Central Iran. Pedosphere 22(1):33–47

    Article  Google Scholar 

  • Day R, Fuller M, Schmidt VA (1977) Hysteresis properties of titanomagnetite: grains -size and compositional dependence. Phys Earth Planet Inter 13:260–267

    Article  Google Scholar 

  • Dearing JA, Dann RJL, Hay K, Lees JA, Loveland PJ, Maher BA, O’Grady K (1996) Frequency-dependent susceptibility measurements of environmental materials. Geophys J Int 124:228–240

    Article  Google Scholar 

  • Dudka S, Adriano D (1997) Environmental impacts of metal ore mining and processing: a review. J Environ Qual 26:590–602

    Article  Google Scholar 

  • Dunlop DJ (2002) The theory and application of the day plot (Jrs/Js versus Hcr/Hc) application to data for rocks, sediments and soils. J Geophys Res 107(B3):EPM 5-1–EPM 5-15

    Google Scholar 

  • Dunlop DJ, Özdemir Ö (1997) Rock magnetism: fundamentals and frontiers. Cambridge University Press, New York, p 573

    Book  Google Scholar 

  • Egli R (2004) Characterization of individual rock magnetic components by analysis of remanence curves. 3. Bacterial magnetite and natural processes in lakes. Phys Chem Earth 29:869–884

    Article  Google Scholar 

  • El Baghdadi M, Rais J (2012) Assessment of heavy metal in surface sediments of Day River at Beni-Mellal Region, Morocco. Res J Environ Earth Sci 4:797–806

    Google Scholar 

  • Evans ME, Heller F (2003) Environmental magnetism: principles and applications of enviromagnetics. Academic Press, International Geophysics Series, Paris, p 299

    Google Scholar 

  • Georgeaud VM, Rochette P, Ambrosi JP (1997) Relationship between heavy metals and magnetic properties in a large polluted catchment: the Etang de Berre (South of France). Phys Chem Earth 22:211–214. doi:10.1016/S0079-1946(97)00105-5

    Article  Google Scholar 

  • Gutiérrez M, Mickus K, Camacho LM (2016) Abandoned Pb–Zn mining wastes and their mobility as proxy to toxicity: a review. Sci Total Environ 565:392–400

    Article  Google Scholar 

  • Guyodo Y, Mostrom A, Penn RL, Banerjee SK (2003) From nanodots to nanorods: oriented aggregation and magnetic evolution of nanocrystalline goethite. Geophys Res Lett. doi:10.1029/2003GL017021

    Google Scholar 

  • Hammouche R (1990) Atlas Vent de l’Algérie, Office National de la Météorologie

  • Hanesch M, Scholger R (2002) Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. Environ Geol 42(8):857–870

    Article  Google Scholar 

  • Iavazzo P, Adamo P, Boni M, Hillier S, Zampella M (2012) Mineralogy and chemical forms of lead and zinc in abandoned mine wastes and soils: an example from Morocco. J Geochem Explor 113:56–67

    Article  Google Scholar 

  • Jordanova N, Jordanova D, Veneva L, Yorova K, Petrovsky E (2003) Magnetic response of soils and vegetation to heavy metal pollutions a-case study. Environ Sci Technol 37:4417–4424

    Article  Google Scholar 

  • Jordanova D, Jordanova N, Hoffmann V (2006) Magnetic mineralogy and grain-size dependence of hysteresis parameters of single spherules from industrial waste products. Phys Earth Planet Inter 154:255–265

    Article  Google Scholar 

  • Jordanova D, Goddu SR, Kotsev T, Jordanova N (2013) Industrial contamination of alluvial soils near Fe–Pb mining site revealed by magnetic and geochemical studies. Geoderma 192:237–248

    Article  Google Scholar 

  • Kříbek B, Zachariáš J, Knésl I, Míková J, Mihaljevič M, Veselovský F, Bamba O (2016) Geochemistry, mineralogy, and isotope composition of Pb, Zn, and Cu in primary ores, gossan and barren ferruginous crust from the Perkoa base metal deposit, Burkina Faso. J Geochem Explor 168:49–64

    Article  Google Scholar 

  • Kruiver P, Dekkers M, Heslop D (2001) Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetization. Earth Planet Sci Lett 189:269–276

    Article  Google Scholar 

  • Kruiver PP, Langereis CG, Dekkers MJ, Krijgsman W (2003) Rock magnetic properties of multi-component natural remanent magnetisation in alluvial red beds (NE Spain). Geophys J Int 153:317–332

    Article  Google Scholar 

  • Liu Q, Roberts AP, Larrasoana JC, Banerjee SK, Guyodo Y, Tauxe L, Oldfield F (2012) Environmental magnetism: principles and applications. Rev Geophys 50(RG4002). doi:10.1029/2012RG000393

  • Longworth G, Becker LW, Thompson R, Oldfield R, Dearing JA, Rummery TA (1979) Mossbauer effet and magnetic studies of secondary iron oxides in soils. J Soil Sci 30:93–110

    Article  Google Scholar 

  • Lu SG, Bai SQ (2006) Study on the correlation of magnetic properties and heavy metals content in urban soils of Hangzhou City, China. J Appl Geophys 60:1–12

    Article  Google Scholar 

  • Lu SG, Bai SQ, Xue QF (2007) Magnetic properties as indicators of heavy metals pollution in urban topsoils: a case study from the city of Luoyang, China. Geophys J Int 171:568–580

    Article  Google Scholar 

  • Lu S, Yu X, Chen Y (2016) Magnetic properties, microstructure and mineralogical phases of technogenic magnetic particles (TMPs) in urban soils: their source identification and environmental implications. Sci Total Environ 543:239–247

    Article  Google Scholar 

  • Magiera T, Jabłońska M, Strzyszcz Z, Rachwal M (2011) Morphological and mineralogical forms of technogenic magnetic particles in industrial dusts. Atmos Environ 45(25):4281–4290

    Article  Google Scholar 

  • Maher BA (1986) Characterisation of soil by mineral magnetic measurements. Phys Earth Planet Inter 42:76–92

    Article  Google Scholar 

  • Maher BA (1988) Magnetic properties of some synthetic sub-micron magnetites. Geophys J Int 94:83–96

    Article  Google Scholar 

  • Maher BA, Taylor RM (1988) Formation of ultrafine-grained magnetite in soils. Nature 336:368–370

    Article  Google Scholar 

  • Matasova G, Kazansky A, Bortnikova S, Airijants A (2005) The use of magnetic methods in an environmental study of areas polluted with non-magnetic wastes of the mining industry (Salair region, Western Siberia, Russia). Geochem Explor Environ Anal 5:75–89

    Article  Google Scholar 

  • Maxbauer D, Feinberg J, Fox D (2016) Magnetic mineral assemblages in soils and paleosols as the basis for paleoprecipitation proxies: a review of magnetic methods and challenges. Earth Sci Rev 155:28–48

    Article  Google Scholar 

  • Morton-Bermea O, Hernandez E, Martinez-Pichardo E, Soler-Arechalde AM, Lozano Santa-Cruz R, Gonzales-Hernandez G (2009) Mexico City topsoils: heavy metals versus magnetic susceptibility. Geoderma 151:121–125

    Article  Google Scholar 

  • Mullins CE (1977) Magnetic susceptibility of the soil and its significance in soil science—a review. J Soil Sci 28:223–246

    Article  Google Scholar 

  • Özdemir Ö, Dunlop D (2014) Hysteresis and coercivity of hematite. J Geophys Res Solid Earth 119:2582–2594

    Article  Google Scholar 

  • Özdemir Ö, Dunlop DJ, Berquó TS (2008) Morin transition in hematite: size dependence and thermal hysteresis. Geochem Geophys Geosyst. doi:10.1029/2008GC002110

    Google Scholar 

  • Pascaud G, Boussen S, Soubrand M, Joussein E, Fondaneche P, Abdeljaouad S, Bril H (2015) Particulate transport and risk assessment of Cd, Pb and Zn in a Wadi contaminated by runoff from mining wastes in a carbonated semi-arid context. J Geochem Explor 152:27–36

    Article  Google Scholar 

  • Petrovský E, Elwood B (1999) Magnetic monitoring of air-, land- and water pollution. In: Maher B, Thompson R (eds) Quaternary climates, environments and magnetism. University Press, Cambridge, pp 279–322

    Chapter  Google Scholar 

  • Petrovský E, Kapička A, Jordanova N, Knab M, Hoffmann V (2000) Low-field magnetic susceptibility: a proxy method of estimating increased pollution of different environmental systems. Environ Geol 39(3–4):312–318

    Google Scholar 

  • Robertson DJ, France DE (1994) Discrimination of remanence-carrying minerals in mixtures, using isothermal remanent magnetisation acquisition curves. Phys Earth Planet Inter 84:223–234

    Article  Google Scholar 

  • Schaider L, Senn D, Estes E, Brabander D, Shine J (2014) Sources and fates of heavy metals in a mining-impacted stream: temporal variability and the role of iron oxides. Sci Total Environ 490:456–466

    Article  Google Scholar 

  • Sekendri A (2004) Rapport sur l’exploitation du gisement de calcaire Batha. SOMIBAR-ENOF, Mine de Bou Caid, W Tissemsilt

    Google Scholar 

  • Spiteri C, Kalinski V, Rösler W, Hoffmann V, Appel E (2005) Magnetic screening of pollution hotspots in the Lausitz Area, Eastern Germany: correlation analysis between magnetic proxies and heavy metal concentration in soil. Environ Geol 49:1–9. doi:10.1007/s00254-005-1271-9

    Article  Google Scholar 

  • Stockhausen H (1998) Some new aspects for the modelling of isothermal remanent magnetisation acquisition curves by cumulative log Gaussian functions. Geophys Res Lett 25:2217–2220

    Article  Google Scholar 

  • Szuszkiewicz M, Magiera T, Kapička A, Petrovský E, Grison H, Gołuchowska B (2015) Magnetic characteristics of industrial dust from different sources of emission: a case study of Poland. J Appl Geophys 116:84–92

    Article  Google Scholar 

  • Tauxe L, Mullender TAT, Pick T (1996) Potbellies, wasp-waists, and superparamagnetism in magnetic hysteresis. J Geophys Res 101:571–583

    Article  Google Scholar 

  • Taylor GF, Wilmshurst JR, Butt CRM, Smith RE (1980) Gossans. J Geochem Explor 12:30–32

    Google Scholar 

  • Thompson R, Oldfield F (1986) Environmental magnetism. Allen and Unwin, London, p 227

    Book  Google Scholar 

  • Tomlinson DL, Wilson JG, Harris CR, Jeffney DW (1980) Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index, Helgol. Wiss Meeresunters 33:566–572

    Google Scholar 

  • Wang B, Xia D, Yu Y, Jia J, Nie Y, Wang X (2015) Detecting the sensitivity of magnetic response on different pollution sources—a case study from typical mining cities in northwestern China. Environ Pollut 207:288–298

    Article  Google Scholar 

  • WHO (2006) World Health Organization. Guidelines for drinking-water quality [electronic resource]: incorporating first addendum, vol 1, recommendations–3rd ed. ISBN 92 4 154696 4

  • Yang T, Liu QS, Chan LS, Cao GD (2007) Magnetic investigation of heavy metals contamination in urban topsoils around the East Lake, Wuhan, China. Geophys J Int 171:603–612

    Article  Google Scholar 

  • Zemour K, Djellidi N (2007) Contribution à l’étude géologique et gîtologique des minéralisations de Bou Caïd (Massif de l’Ouarsenis)–Mémoire d’ingéniorat- USTHB

  • Zhang C, Qiao Q, Piper J, Huang B (2011) Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods. Environ Pollut 159:3057–3070

    Article  Google Scholar 

Download references

Acknowledgements

We wish first of all to make a great tribute to the memory of Dr Bayou Boualem deceased during January 2016. This work results from collaboration between CRAAG (Algiers) and USTHB (Algiers). We thank Philippe Robion, (Cergy-Pontoise University) and Yves Missenard (Paris Sud University) for welcoming us in their laboratories and for allowing us to use their equipment. We are grateful to Yohan Guyodo for help with the measurements and to Mohamed El Messaoud Derder for his constructive advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neli Jordanova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attoucheik, L., Jordanova, N., Bayou, B. et al. Soil metal pollution from former Zn–Pb mining assessed by geochemical and magnetic investigations: case study of the Bou Caid area (Tissemsilt, Algeria). Environ Earth Sci 76, 298 (2017). https://doi.org/10.1007/s12665-017-6622-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6622-9

Keywords

Navigation