Skip to main content
Log in

Changes in depositional environment for the past 35 years in the Thane Creek, central west coast of India: inferences from REEs, metals and magnetic properties

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The role of diagenetic processes in influencing the behaviour of metals (Fe, Mn, Cu, Ni, Zn), rare earth elements (REEs) and environmental magnetic parameters in two sediment cores from a polluted creek environment (the Thane Creek, Mumbai) was investigated. The sediment age was determined using 210Pb analysis. Silty clays were dominant sediments in both the cores. Mineralogy showed the presence of quartz, calcite and plagioclase feldspar in bulk sediments, while smectite was the abundant clay mineral in the finer fraction. The mean ΣREE in both the cores was lower than in post-Archaean average Australian shale (PAAS). The PAAS-normalized REE patterns showed MREE and HREE enrichment with strong positive Eu and Y anomalies. The source rocks in the hinterland played an important role on the REE composition. Magnetic mineralogy showed dominance of magnetite. Both the cores showed low magnetic concentration of Al, Ti, Fe and Mn coinciding with high magnetic grain size at the middle portions. The early diagenetic changes at the middle portion of the cores were masked by significant abundance of clay content at the creek head and with OC and fine magnetite at the lower creek region. Metals (Cu, Ni, Zn; enrichment factor >1.5) and magnetic concentration in sediments were enriched in both the cores suggesting of an anthropogenic source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agnan Y, Delmas NS, Probst A (2014) Origin and distribution of rare earth elements in various lichen and moss species over the last century in France. Sci Total Environ 487:1–12

    Article  Google Scholar 

  • Aller RC (1990) Bioturbation and manganese cycling in hemipelagic sediments. Philos Trans R Soc Lond Ser A-Math Phy Eng Sci 33(1):51–68

    Article  Google Scholar 

  • Ao H, Deng CL, Dekkers MJ, Liu QS (2010) Magnetic mineral dissolution in Pleistocene fluvio-lacustrine sediments, Nihewan Basin (North China). Earth Planet Sci Lett 292:191–200

    Article  Google Scholar 

  • Appleby PG, Oldfield F (1992) Application of 210Pb to sedimentation studies. In: Vanovich M, Harmon RS (eds) Uranium-series disequilibrium: applications to earth, marine & environmental sciences. Oxford University Press, Oxford, pp 731–778

    Google Scholar 

  • Aubert D, Stille P, Probst A (2001) REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochim Cosmochim Acta 65:387–406

    Article  Google Scholar 

  • Benes P, Stamberg K, Vopalka D, Siroky L, Prochazkova S (2003) Kinetics of radioeuropium sorption on Gorelben sand from aqueous solutions and groundwater. J Radioanal Nucl Chem 256:465–472

    Article  Google Scholar 

  • Berner R (1980) Early diagenesis: a theoretical approach. Princeton University Press, New York, p 421

    Google Scholar 

  • Biscaye PE (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent sea and oceans. Geol Soc Am Bull 76:803–832

    Article  Google Scholar 

  • Blaha U, Basavaiah N, Deenadayalan K, Borole DV, Mohite RD (2011) Onset of industrial pollution recorded in Mumbai mudflat sediments, using integrated magnetic, chemical, 210Pb dating, and microscopic methods. Environ Sci Tech 45:686–692

    Article  Google Scholar 

  • Bloemendal J, King JW, Hunt A, DeMenocal PB, Hayashida A (1993) Origin of the sedimentary magnetic record at Ocean Drilling Program sites on the Owen Ridge, western Arabian Sea. J Geophys Res 98:4199–4219

    Article  Google Scholar 

  • Bostick BC, Hansel CM, La Force MJ, Fendoref S (2001) Seasonal fluctuations in zinc speciation within a contaminated wetland. Environ Sci Tech 35:3823–3829

    Article  Google Scholar 

  • Brookins DG (1989) Aqueous geochemistry of rare earth elements. In: Lipin BR, McKay GA (eds) Geochemistry and mineralogy of rare earth elements. Mineralogical Society of America, Washington, pp 201–225

    Google Scholar 

  • Brugam RB (1978) Human disturbance and the historical development of Linsley Pond. Ecology 59:19–36

    Article  Google Scholar 

  • Brumsack HJ (2006) The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeog Palaeoclim Palaeoeco 232:344–361

    Article  Google Scholar 

  • Byrne RH, Kim KH (1990) Rare earth element scavenging in seawater. Geochim Cosmochim Acta 54:2645–2656

    Article  Google Scholar 

  • Calvert SE, Pedersen TF (2007) Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: interpretation and application. In: Hillaire-Marcel C, Vernal AD (eds) Proxies in late cenozoic paleoceanography. Elsevier, Amsterdam

    Google Scholar 

  • Censi P, Incarbona A, Oliveri E, Bonomo S, Tranchida G (2010) Yttrium and REE signature recognized in Central Mediterranean Sea (ODP site 963) during the MIS 6-MIS 5 transition. Palaeogeogr Palaeoclimatol Palaeoecol 292:201–210

    Article  Google Scholar 

  • Chang AS, Pedersen TF, Hendy IL (2014) Effects of productivity, glaciation, and ventilation on Late Quaternary sedimentary redox and trace element accumulation on the Vancouver Island margin, western Canada. Paleocean 29(7):730–746

    Article  Google Scholar 

  • Chavagnac V, German CR, Milton JA, Palmer MR (2005) Sources of REE in sediment cores from the Rainbow vent site (36°14′N, MAR). Chem Geol 216:329–352

    Article  Google Scholar 

  • Cheng Q, Wang W, Wang H, Wang W, Zhao Z (2012) Investigation of the heavy metal contamination of the sediments from the Yellow River Wetland Nature Reserve of Zhengzhou, China. Iran J Publ Health 41:26–35

    Google Scholar 

  • Chouksey MK, Kadam AN, Zingde MD (2004) Petroleum hydrocarbon residues in the marine environment of Bassein-Mumbai. Mar Pollut Bull 49:637–647

    Article  Google Scholar 

  • Coppin F, Berger G, Bauer A, Castet S, Loubet M (2002) Sorption of lanthanide on smectite and kaolinite. Chem Geol 182:57–68

    Article  Google Scholar 

  • Courtillot V, Besse J, Vandamme D, Montigny R, Jaeger JJ, Cappetta H (1986) Deccan flood basalt at Cretaceous/Tertiary boundary? Earth Planet Sci Lett 80:361–364

    Article  Google Scholar 

  • Das A, Krishnaswami S (2007) Elemental geochemistry of river sediments from the Deccan Traps, India: implications to sources of elements and their mobility during basalt-water interaction. Chem Geol 242:232–254

    Article  Google Scholar 

  • Davranche M, Grybos M, Gruau G, Pédrot M, Dia A, Marsac R (2011) Rare earth element patterns: a tool for identifying trace metal sources during wetland soil reduction. Chem Geol 284:127–137

    Article  Google Scholar 

  • De Carlo EH, Wen XY, Cowen JP (2000) Rare earth element fractionation in hydrogenetic Fe–Mn crusts: the influence of carbonate complexation and phosphatization on Sm/Yb ratios. In: Glenn CR, Prevot-Lucas L, Lucas J (eds) Marine authigenesis: from global to microbial. SEPM Special 64:271–285

  • Delgado J, Pérez-López R, Galván L, Nieto JM, Boski T (2012) Enrichment of rare earth elements as environmental tracers of contamination by acid mine drainage in salt marshes: a new perspective. Mar Pollut Bull 64(9):1799–1808

    Article  Google Scholar 

  • Emerson D (2000) Microbial Oxidation of Fe(II) and Mn(II) at Circumneutral pH. In: Lovley D (ed) Environmental Microbe-Metal Interactions. ASM Press, Washington, pp 31–52

    Chapter  Google Scholar 

  • Erel Y, Stolper EM (1993) Modeling of rare-earth element partitioning between particles and solution in aquatic environments. Geochim Cosmochim Acta 57:513–518

    Article  Google Scholar 

  • Fernandes LL (2012) Reconstructing pollution history from intertidal regions of estuaries along Mumbai coast, India. PhD thesis, Goa University

  • Fernandes LL, Nayak GN (2012a) Geochemical assessment in a creek environment, Mumbai, west coast of India. Environ Foren 13:43–54

    Article  Google Scholar 

  • Fernandes LL, Nayak GN (2012b) Heavy metals contamination in mudflat and mangrove sediments (Mumbai, India). Chem Ecol 28(5):435–455

    Article  Google Scholar 

  • Fernandes LL, Nayak GN (2014) Characterizing metal levels and their speciation in intertidal sediments along Mumbai coast, India. Mar Pollut Bull 79:371–378

    Article  Google Scholar 

  • Fernandes LL, Nayak GN, Ilangovan D, Borole DV (2011) Accumulation of sediment, organic matter and trace metals with space and time, in a creek along Mumbai coast, India. Estuar Coast Shelf Sci 91:388–399

    Article  Google Scholar 

  • Flynn WW (1968) Determination of low levels of polonium- 210 in environmental materials. Anal Chim Acta 43:221–227

    Article  Google Scholar 

  • Folk RL (1974) Petrology of sedimentary rocks. Texas, Hemphill, p 177

    Google Scholar 

  • Froelich PN, Klinkhammer GP, Bender ML, Luedke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the Eastern Equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090

    Article  Google Scholar 

  • Galán E, Fernández-Caliani JC, Miras A, Aparicio P, Márquez MG (2007) Residence and fractionation of rare earth elements during kaolinization of alkaline peraluminous granites in NW Spain. Clay Miner 42:341–352

    Article  Google Scholar 

  • Gambrell RP, Wiesepape JB, Patrick WH Jr, Duff MC (1991) The effects of pH, redox and salinity on metal release from a contaminated sediment. Water Air Soil Pollut 57–58:359–367

    Article  Google Scholar 

  • Gao S, Wedepohl KH (1995) The negative Eu anomaly in Archean sedimentary rocks: implications for decomposition, age and importance of their granitic sources. Earth Planet Sci Lett 133:81–94

    Article  Google Scholar 

  • Gaudette HE, Flight WR, Toner L (1974) An inexpensive titration method for the determination of organic carbon in recent sediment. J Sed Petrol 44(1):249–253

    Google Scholar 

  • Gobeil C, Silverberg N, Sundby B, Cossa D (1987) Cadmium diagenesis in Laurentian Trough sediments. Geochim Cosmochim Acta 51:589–596

    Article  Google Scholar 

  • Gotze J, Lewis R (1994) Distribution of REE and trace elements in size and mineral fractions of high-purity quartz sands. Chem Geol 114:43–57

    Article  Google Scholar 

  • Gromet LP, Silver ST (1983) Rare earth element distributions among minerals in a granodiorite and their petrogenetic implications. Geochim Cosmochim Acta 47:925–939

    Article  Google Scholar 

  • Haskin LA, Allex RO, Helmke PA, Paster TP, Andersonm R, Korotevr L, Zweifelk A (1970) Rare earths and other trace elements in Apollo lunar samples. Geochim Cosmochim Acta 2:1213–1231

    Google Scholar 

  • Hausrath EM, Navarre-Sitchler AK, Sak PB, Williams JZ, Brantley SL (2011) Soil profiles as indicators of mineral weathering rates and organic interactions for a Pennsylvania diabase. Chem Geol 290(3–4):89–100

    Article  Google Scholar 

  • Henderson P (1984) Rare earth element geochemistry. Elsevier, Oxford

    Google Scholar 

  • Hounslow MW, Morton AC (2004) Evaluation of sediment provenance using magnetic mineral inclusions in clastic silicates: comparison with heavy mineral analysis. Sed Geol 171:13–36

    Article  Google Scholar 

  • Hoyle J, Elderfield H, Gledhill A, Greaves M (1984) The behavior of the rare earth elements during mixing of river and sea waters. Geochim Cosmochim Acta 48:143–149

    Article  Google Scholar 

  • Jeffery KL, Henderson P, Subbarao KV, Walsh JN (1988) The Zeolites of the Deccan basalt—a study of their distribution. In: Subbarao KV (ed) Deccan flood basalts. Geological Society of India, Bengaluru, pp 151–162

    Google Scholar 

  • Jenne EA (1976) Trace element sorption by sediments and soils—sites and processes. In: Chappell WR, Petersen KK (eds) Molybdenum in the Environment (v.2). Marcel Dekker, Inc., New York, pp 425–553

    Google Scholar 

  • Jha SK, Krishnamoorthy TM, Pandit GG, Nambi KSV (1999) History of accumulation of mercury and nickel in Thane Creek, Mumbai, using 210Pb dating technique. Sci Total Environ 236:91–99

    Article  Google Scholar 

  • Johannesson KH, Tang J, Daniels JM, Bounds WJ, Burdige DJ (2004) Rare earth element concentrations and speciation in organic-rich blackwaters of the Great Dismal Swamp, Virginia, USA. Chem Geol 209:271–294

    Article  Google Scholar 

  • Kidder DL, Krishnaswamy R, Mapes RH (2003) Elemental mobility in phosphatic shales during concretion growth and implications for provenance analysis. Chem Geol 198:335–353

    Article  Google Scholar 

  • Kosko MK, Lopatin BG, Ganelin VG (1990) Major geological features of the islands of the East Siberian and Chukchi Seas and the northern coast of Chukotka. Mar Geol 93:349–367

    Article  Google Scholar 

  • Krishna AK, Govil PK (2005) Heavy metal distribution and contamination in soils of Thane-Belapur industrial development area, Mumbai, Western India. Environ Geol 47:1054–1061

    Article  Google Scholar 

  • Leslie BW, Lund SP, Hammond DE (1990) Rock magnetic evidence for dissolution and authigenic growth of magnetic minerals in anoxic marine sediments. J Geophys Res 95:4437–4452

    Article  Google Scholar 

  • Luoma SN (1990) Processes affecting metal concentrations in estuarine and coastal marine sediments. In: Furness RW, Rainbow PS (eds) Heavy metals in the marine environment. CRC Press, Boca Raton, pp 51–66

    Google Scholar 

  • MacRae ND, Nesbitt HW, Kronberg BI (1992) Development of a positive Eu anomaly during diagenesis. Earth Planet Sci Lett 109:585–591

    Article  Google Scholar 

  • Marmolejo-Rodríguez AJ, Prego R, Meyer-Willerer A, Shumilin E, Sapozhnikov D (2007) Rare earth elements in iron oxy-hydroxide rich sediments from the Marabasco River-Estuary system (Pacific coast of Mexico), REE affinity with iron and aluminum. J Geochem Explor 94:43–51

    Article  Google Scholar 

  • Martinez-Ruiz F, Kastner M, Gallego-Torres D, Rodrigo-Glamiz M, Nieto-Moreno V, Ortega-Huertas M (2015) Paleoclimate and paleoceanography over the past 20,000 yr in the Mediterranean Sea Basins as indicated by sediment elemental proxies. Quart Sci Rev 107:25–46

    Article  Google Scholar 

  • Martins MVA, Mane MA, Frontalini F, Santos JF, Silva FS et al (2015) Early diagenesis and clay mineral adsorption as driving factors of metal pollution in sediments: the case of Aveiro Lagoon (Portugal). Environ Sci Pollut Res 22:10019–10033

    Article  Google Scholar 

  • MCGM (2003) The environmental status report of Mumbai, 2002–2003. MCGM, Mumbai

    Google Scholar 

  • McLennan SM (1989) Rare Earth Elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin BR, Mackay GA (eds) Geochemistry and mineralogy of rare earth elements. Mineral Soc America 21:169–200

  • Ohta A, Kawabe I (2000) Rare earth element partitioning between Fe oxyhydroxide precipitates and aqueous NaCl solutions doped with NaHCO3: determinations of rare earth element complexation constants with carbonate ions. Geochem J 34(6):439–454

    Article  Google Scholar 

  • Ohta A, Kawabe I (2001) REE (III) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by δ-MnO2. Geochim Cosmochim Acta 65(5):695–703

    Article  Google Scholar 

  • Oldfield F (1999) The rock magnetic identification of magnetic mineral and magnetic grain size assemblages. In: Walden J, Oldfield F, Smith JP (eds) Environmental magnetism: a practical guide. Quaternary Research Association, London, pp 98–112

    Google Scholar 

  • Piper DZ (1974) Rare earth elements in the sedimentary cycle: a summary. Chem Geol 14:285–304

    Article  Google Scholar 

  • Postma D, Jakobsen R (1996) Redox zonation: equilibrium contains on the Fe(III)/SO4-reduction interface. Geochim Cosmochim Acta 60(17):3169–3175

    Article  Google Scholar 

  • Prajith A, Rao VP, Kessarkar PM (2015) Controls on the distribution and fractionation of yttrium and rare earth elements in core sediments from the Mandovi estuary, western India. Cont Shelf Res 92:59–71

    Article  Google Scholar 

  • Prego R, Caetano M, Vale C, Marmolejo-Rodríguez J (2009) Rare earth elements in sediments of the Vigo Ria, NW Iberian Peninsula. Cont Shelf Res 29:896–902

    Article  Google Scholar 

  • Quadros G, Athalye RP (2012) Decline of fish diversity in the anthropogenically polluted Thane Creek along the Central West Coast of India. Int Res J Bio Sci 1(4):17–21

    Google Scholar 

  • Ram A, Rokade MA, Zingde MD, Borole DV (2009) Post-depositional memory record of mercury in sediment near the effluent disposal site of a chlor-alkali plant in Thane Creek-Mumbai Harbour, India. Environ Tech 30(8):765–783

    Article  Google Scholar 

  • Rao VP, Kessarkar PM, Patil SV, Ahmad SM (2008) Rock magnetic and geochemical record in a sediment core from the eastern Arabian Sea: diagenetic and environmental implications during the late Quaternary. Palaeogeogr Palaeoclim Palaeoecol 270:46–52

    Article  Google Scholar 

  • Rateev MA, Gorbunova ZN, Lisitzyn AP, Nosov GL (1969) The distribution of clay minerals in the oceans. Sedimentology 13:21–43

    Article  Google Scholar 

  • Rey D, Mohamed KJ, Bernabeu A, Rubio B, Vilas F (2005) Early diagenesis of magnetic minerals in marine transitional environments: geochemical signatures of hydrodynamic forcing. Mar Geol 215:215–236

    Article  Google Scholar 

  • Riedinger N, Formolo MJ, Lyons TW, Henkel S, Beck A, Kasten S (2014) An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments. Geobiol 12:172–181

    Article  Google Scholar 

  • Rollinson H (1993) Using trace elements data. In: Rollinson H (ed) Using geochemical data: evaluation, presentation, interpretation. Pearson Prentice Hall, Upper Saddle River, pp 133–134

    Google Scholar 

  • Rolph TC, Oldfield F, van der Post KD (1996) Palaeomagnetism and rock-magnetism results from Lake Albano and the central Adriatic Sea (Italy). Memorie dell’Istituto Italiano di Idrobiologia 55:265–283

    Google Scholar 

  • Ruhlin DE, Owen RM (1986) The rare earth element geochemistry of hydrothermal sediments from the East Pacific Rise: examination of a seawater scavenging mechanism. Geochim Cosmochim Acta 50:393–400

    Article  Google Scholar 

  • Sager WW, Hall SA (1990) Magnetic properties of black mud turbidites from ODP leg 116, distal Bengal fan, Indian Ocean. Sci Results 116:317–335 (Proceedings of the Ocean Drilling Program)

    Google Scholar 

  • Sharma P, Borole DV, Zingde MD (1994) 210-Pb geochronology and trace element composition of the sediments in the vicinity of Bombay, west coast of India. Mar Chem 47:227–241

    Article  Google Scholar 

  • Shaw T, Gieskes J, Jahnke R (1990) Early diagenesis in different depositional environments: the response of transition metals in pore water. Geochim Cosmochim Acta 54:1233–1246

    Article  Google Scholar 

  • Sheth HC, Zellmer GF, Demonterova EI, Ivanov AV, Kumar R, Patel RK (2014) The Deccan tholeiite lavas and dykes of Ghatkopar-Powai area, Mumbai, Panvel flexure zone: geochemistry, stratigraphic status, and tectonic significance. J Asian Earth Sci 84:69–82

    Article  Google Scholar 

  • Sholkovitz ER (1995) The aquatic chemistry of rare earth elements in rivers and estuaries. Aquat Geochem 1:1–34

    Article  Google Scholar 

  • Silva YJAB, Cantalice JRB, Singh VP, Nascimento CWA, Piscoya VC, Guerra SMS (2015) Trace element fluxes in sediments an environmentally impacted river from a coastal zone of Brazil. Environ Sci Pollut Res 22:14755–14766

    Article  Google Scholar 

  • Silva YJAB, Nascimento CWAD, Silva YJAB, Biondi CM, Silva CMCAC (2016) Rare earth element concentrations in Brazilian benchmark soils. Rev Bras Cienc Solo 40:e0150413

    Google Scholar 

  • Singh KT, Nayak GN, Fernandes LL, Borole DV, Basavaiah N (2014) Changing environmental conditions in recent past-Reading through the study of geochemical characteristics, magnetic parameters and sedimentation rate of mud flats, central west coast of India. Palaeogeogr Palaeoclim Palaeoeco 397:61–74

    Article  Google Scholar 

  • Sukeshwala RN, Avasia RK (1972) Carbonatite-alkaline complex of Panwad–Kawant, Gujarat and its bearing on the structural characteristics of the area. Bull Volcanol 35:564–578

    Article  Google Scholar 

  • Summers JK, Wade LT, Engle VD, Malaeb ZA (1996) Normalization of metal concentrations in estuarine sediments from the Gulf of Mexico. Estuaries 19(3):581–594

    Article  Google Scholar 

  • Szefer P, Szefer K, Glasby GP, Pempkowiak J, Kaliszan R (1996) Heavy-metal pollution in surficial sediments from the southern Baltic Sea off Poland. J Environ Sci Health, Part A: Environ Sci Eng Toxic Hazard Subst Control A31(10):2723–2754

    Google Scholar 

  • Tang J, Johannesson KH (2003) Speciation of rare earth elements in natural terrestrial waters: assessing the role of dissolved organic matter from the modelling approach. Geochim Cosmochim Acta 67:2321–2339

    Article  Google Scholar 

  • Tarduno JA (1994) Temporal trends of magnetic dissolution in the pelagic realm: Gauging paleoproductivity? Earth Planet Sci Lett 123:39–48

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, p 312

    Google Scholar 

  • Tertre E, Hofmann A, Berger G (2008) Rare earth element sorption by basaltic rock: experimental data and modelling results using the ‘generalized composite approach’. Geochim Cosmochim Acta 72:1043–1056

    Article  Google Scholar 

  • Thompson R, Oldfield F (1986) Environmental magnetism. Allen and Unwin, London

    Book  Google Scholar 

  • Tribovillard N, Algeo T, Lyons TW, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232:12–32

    Article  Google Scholar 

  • United Nations (2010) World population prospects: the 2008 revision and world urbanization prospects: the 2009 revision. Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, New York

    Google Scholar 

  • Valdés J, Vargas G, Sifeddine A, Ortlieb L, Guiñez M (2005) Distribution and enrichment of heavy metals in Mejillones Bay (23˚S), Northern Chile: geochemical and statistical approach. Mar Pollut Bull 50:1558–1568

    Article  Google Scholar 

  • Van Santvoort PJM, De Lange GJ, Langereis CG, Dekkers MJ, Paterne M (1997) Geochemical and paleomagnetic evidence for the occurrence of ‘missing’ sapropels in eastern Mediterranean sediments. Paleocean 12:773–786

    Article  Google Scholar 

  • Verosub KL, Roberts AP (1995) Environmental magnetism: past, present and future. Geophys Res 100:2175–2192

    Article  Google Scholar 

  • Verplanck PL, Nordstrom DK, Taylor HE, Kimball BA (2004) Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation. Appl Geochem 19(8):1339–1354

    Article  Google Scholar 

  • Walkey A, Black JA (1934) The determination of organic carbon by rapid titration method. Soil Sci 37:29–38

    Article  Google Scholar 

  • Yu JY, Lu SG (1991) Soil magnetism. Jiangxi Science and Technology Press, Nanchang

    Google Scholar 

  • Zellmer GF, Sheth HC, Iizuka Y, Lai YJ (2012) Remobilization of granitoid rocks through mafic recharge: evidence from basalt-trachyte mingling and hybridization in the Manori-Gorai area, Mumbai Deccan Traps. Bull Volcanol 74:47–66

    Article  Google Scholar 

  • Zingde MD (1989) Marine pollution-what are we heading for? In: Somayajulu BLK (ed) Ocean science-trends and future directions. New Delhi, Indian National Science Academy

    Google Scholar 

  • Zingde MD, Desai BN (1981) Mercury in Thane Creek, Bombay harbour. Mar Pollut Bull 12:237–241

    Article  Google Scholar 

Download references

Acknowledgements

The first author thanks the Department of Science and Technology for the award of fast-track young scientist fellowship (SR/FTP/ES-26/2013). Thanks are due to Mr. Girish Prabhu for XRD analysis. This is NIO Contribution No. 5997.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina L. Fernandes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, L.L., Kessarkar, P.M., Parthiban, G. et al. Changes in depositional environment for the past 35 years in the Thane Creek, central west coast of India: inferences from REEs, metals and magnetic properties. Environ Earth Sci 76, 189 (2017). https://doi.org/10.1007/s12665-017-6510-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6510-3

Keywords

Navigation