Skip to main content

Advertisement

Log in

Bacterial activity in hydrogenetic ferromanganese crust from the Indian Ocean: a combined geochemical, experimental and pyrosequencing study

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Afanasiy-Nikitin Seamount (ANS) in the Equatorial Indian Ocean harbors hydrogenetic ferromanganese (Fe–Mn) crusts. It was hypothesized that the bacteria associated with the crust catalyze the precipitation of metal hydroxides in seawater more than abiotic dissolution, contributing to hydrogenetic accretion on the seamount. To test this hypothesis, Fe–Mn crust samples were collected from the flanks of the ANS. Geochemical properties of water samples collected were analyzed, and simulatory laboratory experiments were conducted to quantify bacterial accretion rates. Pyrosequencing was used to delineate the community associated with the crust. The environmental parameters of the water column indicated significant differences (p < 0.001) between a seamount and a non-seamount site. Experiments on Fe–Mn crust under near in situ temperature (4 ± 2 °C) and pressure (20 MPa) conditions showed significantly (p < 0.001) higher biotic immobilization than abiotic immobilization for Fe and Co. The sequence of immobilization was Fe (9.34) > Mn (0.63) > Ni (0.003) > Co (0.002 mg g−1) with added glucose (0.01%) and Fe (9.09) > Mn (0.87) > Ni (0.0043) > Co (0.0008 mg g−1) without added glucose. Unlike the hydrothermal vent sites of the Pacific where ε- and ζ-Proteobacteria were reported to be dominant, the hydrogenetic Fe–Mn crusts of the ANS revealed sequences related to known Fe-, Mn- and S-oxidizing bacteria of the γ- and α-Proteobacterial groups. Thus, the different selective pressures in the two environments could be one of the factors that have brought about a difference in their bacterial diversity. Besides, the ambient nutrient levels could have triggered the participation of the Proteobacterial community of the ANS in the precipitation of Fe–Mn rich minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alldredge AL, Silver MW (1988) Characteristics, dynamics and significance of marine snow. Prog Oceanogr 20:41–82

    Article  Google Scholar 

  • Aminot A, Kerouel R, Coverly SC (2009) Nutrients in seawater using segmented flow analysis. In: Wurl O (ed) Practical guidelines for the analysis of seawater. CRC Press, New York, pp 143–178

    Google Scholar 

  • Anderson CR, Johnson HA, Caputo N, Davis RE, Torpey JW, Tebo BM (2009) Mn(II) oxidation is catalyzed by heme peroxidases in “Aurantimonas manganoxydans” strain SI85-9A1 and Erythrobacter sp. strain SD-21. Appl Environ Microbiol 75:4130–4138

    Article  Google Scholar 

  • Antony R, Sujith PP, Fernandes SO, Verma P, Khedekar VD, Loka Bharathi PA (2011) Cobalt immobilization by manganese oxidizing bacteria from the Indian Ridge System. Curr Microbiol 62:840–849

    Article  Google Scholar 

  • Arnosti C, Durkin S, Jeffrey WH (2005) Patterns of extracellular enzyme activities among pelagic marine microbial communities: implications for cycling of dissolved organic carbon. Aquat Microb Ecol 38:135–145

    Article  Google Scholar 

  • Bach W, Edwards K (2003) Iron and sulphide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim Cosmochim Acta 67:3871–3887

    Article  Google Scholar 

  • Banakar VK, Pattan JN, Mudholkar AV (1997) Palaeoceanographic conditions during the formation of ferromanganese crust from the Afanasiy Nikitin seamount, north central Indian Ocean-geochemical evidence. Mar Geol 136:299–315

    Article  Google Scholar 

  • Banakar VK, Galy A, Sukumaran NP, Parthiban G, Volvaiker AY (2003) Himalayan sedimentary pulses recorded by silicate detritus within a ferromanganese crust from the Central Indian Ocean. Earth Planet Sci Lett 205:337–348

    Article  Google Scholar 

  • Banakar VK, Hein JR, Rajani RP, Chodankar AR (2007) Platinum group elements and gold in ferromanganese crusts from Afanasiy-Nikitin seamount, equatorial Indian Ocean: sources and fractionation. J Earth Syst Sci 116:3–13

    Article  Google Scholar 

  • Bostock HC, Hayward BW, Neil HL, Currie K, Dunbar GB (2011) Deep-water carbonate concentrations in the southwest Pacific. Deep-Sea Res 58:72–85

    Article  Google Scholar 

  • Carmichael MJ, Carmichael SK, Santelli CM, Strom A, Brauer SL (2013) Mn(II)-oxidizing bacteria are abundant and environmentally relevant members of ferromanganese deposits in caves of the upper Tennessee River Basin. Geomicrobiol J 30:779–800

    Article  Google Scholar 

  • Clark MR, Rowden AA, Schlacher T, Williams A, Consalvey M, Stocks KI, Rogers AD, O’Hara TD, White M, Shank TM, Hall-Spencer JM (2010) The ecology of seamounts: structure, function, and human impacts. Annu Rev Mar Sci 2:375–400

    Article  Google Scholar 

  • Collins AJ, Nyholm SV (2011) Draft genome of Phaeobacter gallaeciensis ANG1, a dominant member of the accessory nidamental gland of Euprymna scolopes. J Bacteriol 193:3397–3398

    Article  Google Scholar 

  • Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions, occurences and uses. Wiley-VCH, Weinheim

    Google Scholar 

  • Eberhard C, Wirsen CO, Jannasch HW (1995) Oxidation of polymetal sulfides by chemolithoautotrophic bacteria from deep-sea hydrothermal vents. Geomicrobiol J 13:145–164

    Article  Google Scholar 

  • Edmond JM, Jacobs SS, Gordon AL, Mantyla AW, Weiss RF (1979) Water column anomalies in dissolved silica over opaline pelagic sediments and the origin of the deep silica maximum. J Geophys Res 84:7809–7826

    Article  Google Scholar 

  • Edwards KJ, Bach W, Rogers DR (2003) Geomicrobiology of the ocean crust: a role for chemoautotrophic Fe-bacteria. Biol Bull 204:180–185

    Article  Google Scholar 

  • Edwards KJ, Bach W, McCollom TM (2004) Neutrophilic iron oxidizing bacteria in the Ocean: their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea. Geomicrobiol J 21:393–404

    Article  Google Scholar 

  • Fernandes V, Rodrigues V, Ramaiah N, Paul JT (2008) Relevance of bacterioplankton abundance and production in the oligotrophic equatorial Indian Ocean. Aquat Ecol 42:511–519

    Article  Google Scholar 

  • Garrels RM (1965) Silica: role in the buffering of natural waters. Science 148:69

    Article  Google Scholar 

  • Ginn BR, Fein JB (2008) The effect of species diversity on metal adsorption on to bacteria. Geochim Cosmochim Acta 72:3939–3948

    Article  Google Scholar 

  • Gomez-Pereira PR, Fuchs BM, Alonso C, Olivervan MJ, Beusekom JEE, Amann R (2010) Distinct Flavobacterial communities in contrasting water masses of the North Atlantic Ocean. ISME J 4:472–487

    Article  Google Scholar 

  • Gonzalez FJ, Somoza L, Maldonado A, Torres T, Ortiz JE (2011) Microbial induced mineralization in Co-rich ferromanganese crusts from the Scotia Sea. Mineral Mag 75:933

    Google Scholar 

  • Halbach P, Schwarz-Schampera U, Marbler H (2008) Platinum and some other trace metals in ferromanganese crusts-Geochemical models to explain contradictions. Marine Minerals: Technological Solutions and Environmental Challenges, Mississippi

    Google Scholar 

  • Hansell DA, Carlson CA (1998) Deep-ocean gradients in the concentration of dissolved organic carbon. Nature 395:263–266

    Article  Google Scholar 

  • Hein JR, Koschinsky A (2014) Deep ocean ferromanganese crusts and nodules. In: Scott S (ed) Treatise on geochemistry. Elsevier Ltd, New York, pp 273–291

    Chapter  Google Scholar 

  • Hirschler A, Lucas J, Hubert J-C (1990) Bacterial involvement in apatite genesis. FEMS Microbiol Ecol 73:211–220

    Article  Google Scholar 

  • Hou S, Saw JH, Lee KS et al (2004) Genome sequence of the deep-sea γ-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy. Proc Natl Acad Sci USA 101:18036–18041

    Article  Google Scholar 

  • Huber JA, Mark-Welch DB, Morrison H, Huse SM, Neal PR, Butterfield DA, Sogin ML (2007) Microbial population structures in the deep marine biosphere. Science 318:97–100

    Article  Google Scholar 

  • Johnson KM, King AE, Sieburth JM (1985) Coulometric TCO2 analyses for marine studies; an introduction. Mar Chem 16:61–82

    Article  Google Scholar 

  • Kato C (2012) Microbiology of piezophiles in deep-sea environments. In: Anitori RP (ed) Extremophiles: microbiology and biotechnology. Caister Academic Press, Poole, pp 53–75

    Google Scholar 

  • Kato S, Yamagishi A (2011) Microbial biodiversity and biogeography on the deep seafloor. In: Grillo O, Venora G (eds) Changing diversity in changing environment. InTech, Rijeka, pp 357–374

    Google Scholar 

  • Kaye JZ, Sylvan JB, Edwards KJ, Baross JA (2011) Halomonas and Marinobacter ecotypes from hydrothermal vent, subseafloor and deep-sea environments. FEMS Microbiol Ecol 75:123–133

    Article  Google Scholar 

  • Kennedy CB, Martinez RE, Scott SD, Ferris FG (2003) Surface chemistry and reactivity of bacteriogenic iron oxides from Axial Volcano, Juan de Fuca Ridge, north-east Pacific Ocean. Geobiology 1:59–69

    Article  Google Scholar 

  • Khandeparker R, Meena RM, Deobagkar D (2014) Bacterial diversity in deep-sea sediments from Afanasy Nikitin Seamount, Equatorial Indian Ocean. Geomicrobiol J 31:942–949

    Article  Google Scholar 

  • Konhauser KO (1998) Diversity of bacterial iron mineralization. Earth Sci Rev 43:91–121

    Article  Google Scholar 

  • Krishnan KP, Fernandes CEG, Fernandes SO, Loka Bharathi PA (2006) Tolerance and immobilization of cobalt by some bacteria from ferromanganese crusts of the Afanasiy Nikitin Seamounts. Geomicrobiol J 23:31–36

    Article  Google Scholar 

  • Learman DR, Voelker BM, Vazquez-Rodriguez AI, Hansel CM (2011) Formation of manganese oxides by bacterially generated superoxide. Nat Geosci 4:95–98

    Article  Google Scholar 

  • Liao L, Xu X, Jiang X, Wang C, Zhang D, Ni J, Wu M (2011) Microbial diversity in deep-sea sediment from the cobalt-rich crust deposit region in the Pacific Ocean. FEMS Microbiol Ecol 78:565–585

    Article  Google Scholar 

  • Margesin R, Płaza GA, Kasenbacher S (2011) Characterization of bacterial communities at heavy-metal-contaminated sites. Chemosphere 82:1583–1588

    Article  Google Scholar 

  • Martinez JS, Zhang GP, Holt PD, Jung HT, Carrano CJ, Haygood MG, Butler A (2000) Self-assembling amphiphilic siderophores from marine bacteria. Science 287:1245–1247

    Article  Google Scholar 

  • Mason OU, Di Meo-Savoie CA, Van Nostrand JD, Zhou J, Fisk MR, Giovannoni SJ (2009) Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts. ISME J 3:231–242

    Article  Google Scholar 

  • Neufeld JD, Schafer H, Cox MJ, Boden R, McDonald IR, Murrell JC (2007) Stable-isotope probing implicates Methylophaga spp and novel Gammaproteobacteria in marine methanol and methylamine metabolism. ISME J 1:480–491

    Article  Google Scholar 

  • Nitahara S, Kato S, Urabe T, Usui A, Yamagishi A (2011) Molecular characterization of the microbial community in hydrogenetic ferromanganese crusts of the Takuyo-Daigo Seamount, northwest Pacific. FEMS Microbiol Lett 321:121–129

    Article  Google Scholar 

  • Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ (2011) Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev 75:361–422

    Article  Google Scholar 

  • Palmer MR, Pearson PN, Cobb SJ (1998) Reconstructing past ocean pH-depth profiles. Science 282:1468–1471

    Article  Google Scholar 

  • Pommier T, Neal PR, Gasol JM, Coll M, Acinas SG, Pedrós-Alió C (2010) Spatial patterns of bacterial richness and evenness in the NW Mediterranean Sea explored by pyrosequencing of the 16S rRNA. Aquat Microb Ecol 61:221–233

    Article  Google Scholar 

  • Rajani RP, Banakar VK, Parthiban G, Mudholkar AV, Chodankar AR (2005) Compositional variation and genesis of ferromanganese crusts of the Afanasiy-Nikitin Seamount, Equatorial Indian Ocean. J Earth Syst Sci 114:51–61

    Article  Google Scholar 

  • Sabirova JS, Ferrer M, Regenhardt D, Timmis KN, Golyshin PN (2006) Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization. J Bacteriol 188:3763–3773

    Article  Google Scholar 

  • Sandy M, Butler A (2009) Microbial iron acquisition: marine and terrestrial siderophores. Chem Rev 109:4580–4595

    Article  Google Scholar 

  • Santelli CM, Edgcomb VP, Bach W, Edwards KJ (2009) The diversity and abundance of bacteria inhabiting seafloor lavas positively correlate with rock alteration. Environ Microbiol 11:86–98

    Article  Google Scholar 

  • Sardessai S, Shetye S, Maya MV, Mangala KR, Prasanna Kumar S (2010) Nutrient characteristics of the water masses and their seasonal variability in the eastern equatorial Indian Ocean. Mar Environ Res 70:272–282

    Article  Google Scholar 

  • Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6:e27310. doi:10.1371/journal.pone.0027310

    Article  Google Scholar 

  • Schott FA, McCreary JP Jr (2001) The monsoon circulation of the Indian Ocean. Prog Oceanogr 51:1–123

    Article  Google Scholar 

  • Sly LI, Arunpairojana V, Dixon DR (1990) Binding of colloidal MnO2 by extracellular polysaccharides of Pedomicrobium manganicum. Appl Environ Microbiol 56:2791–2794

    Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored ‘‘rare biosphere’’. Proc Natl Acad Sci USA 103:12115–12120

    Article  Google Scholar 

  • Strickland JDH, Parsons TR (1968) A practical handbook of sea water analysis, Bulletin No. 167. Fisheries Research Board of Canada

  • Sujith PP (2014) Ecology of metal-microbe interactions in ferromanganese crusts of the Afanasiy-Nikitin Seamount. Ph.D. thesis. Goa University, Taleigao Plateau, Goa

  • Sujith PP, Khedekar VD, Girish AP, Loka Bharathi PA (2010) Immobilization of nickel by bacterial isolates from the indian ridge system and the chemical nature of the accumulated metal. Geomicrobiol J 27:424–434

    Article  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. In: R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0: (http://www.R-project.org/)

  • Tebo BM, Clement BG, Dick GJ (2007) Biotransformations of manganese. In: Hurst CJ, Crawford RL, Garland JL, Lipson DA, Mills AL, Stetzenbach LD (eds) Manual of environmental microbiology. ASM Press, Washington, pp 1223–1238

    Google Scholar 

  • Templeton AS, Staudigel H, Tebo BM (2005) Diverse Mn(II)-oxidizing bacteria isolated from Submarine basalts at Loihi seamount. Geomicrobiol J 22:127–139

    Article  Google Scholar 

  • Thorseth IH, Torsvik T, Torsvik V, Daae FL, Pedersen RB, Party K-S (2001) Diversity of life in ocean floor basalt. Earth Planet Sci Lett 194:31–37

    Article  Google Scholar 

  • Tipping E, Heaton MJ (1983) The adsorption of aquatic humic substances by two oxides of manganese. Geochim Cosmochim Acta 47:1393–1397

    Article  Google Scholar 

  • Tovar-Sanchez A, Sanudo-Wilhelmy SA, Garcia-Vargas M, Weaver RS, Popels LC, Hutchins DA (2003) A trace metal clean reagent to remove surface bound iron from marine phytoplankton. Mar Chem 82:91–99

    Article  Google Scholar 

  • Tully BJ, Heidelberg JF (2013) Microbial communities associated with ferromanganese nodules and the surrounding sediments. Front Microbiol 4:161. doi:10.3389/fmicb.2013.00161

    Article  Google Scholar 

  • Vandenabeele J, De Beer D, Germonpre R, Van de Sande R, Verstraete W (1995) Influence of nitrate on manganese removing microbial consortia from sand filters. Water Res 29:579–587

    Article  Google Scholar 

  • Vu HTD, Sohrin Y (2013) Diverse stoichiometry of dissolved trace metals in the Indian Ocean. Sci Rep 3:1745. doi:10.1038/srep01745

    Article  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems. Academic Press, San Diego

    Google Scholar 

  • Xuezheng L, Aiguo G, Haowen C (2008) Isolation and phylogenetic analysis of cultivable manganese bacteria in sediments from the Arctic Ocean. Acta Ecol Sin 28:6364–6370

    Article  Google Scholar 

  • Zhao J, Zhang H, Wu G, Lu B, Pulyaeva IA, Zhang H, Pang X (2014) Biomineralization of organic matter in cobalt-rich crusts from the Marcus-Wake Seamounts of the western Pacific Ocean. Acta Oceanol Sin 33:67–74

    Article  Google Scholar 

  • Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Director, CSIR-National Institute of Oceanography, Goa, for providing the required facilities to conduct this research work. The pyrosequencing of DNA was carried out through the Cooperative Run programme under the aegis of ICOMM. The authors record their thankfulness to Dr. Sogin, Dr. Zettler and their team. The study was carried out under the project “Preliminary exploration of cobalt-rich seamount crusts in the northern Indian Ocean” funded by the Ministry of Earth Sciences, Government of India. Facilitation onboard by the shipboard scientific party and crew of Akademik Akademik Boris Petrov (2009) is acknowledged. SPP thanks the Council of Scientific and Industrial Research, New Delhi, India, for the award of Senior Research Fellowship. This manuscript has NIO contribution number 5996.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Judith B. D. Gonsalves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sujith, P.P., Gonsalves, M.J.B.D., Bhonsle, S. et al. Bacterial activity in hydrogenetic ferromanganese crust from the Indian Ocean: a combined geochemical, experimental and pyrosequencing study. Environ Earth Sci 76, 191 (2017). https://doi.org/10.1007/s12665-017-6495-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6495-y

Keywords

Navigation