Skip to main content
Log in

Integration of seismic and sedimentological methods for analysis of Quaternary alluvial depositional systems

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Due to the high potential of unconsolidated sedimentary bodies to form aquifers and reservoirs, an identification of their exact geometry and location is of great importance. Current conceptual models of these bodies are often developed using scattered data from hydrogeological wells. More reliable results can be achieved by application of methods that can provide continuous subsurface record of the actual geological situation in the investigated area. In this article, a combination of two different approaches is used on a case study of alluvial Quaternary sediments from the East Slovakian Basin, including the discussion how these methods contribute to the final geological interpretation. First, a sedimentological analysis was performed with the use of data acquired from auger drilled hydrogeological wells, which enabled identification of depositional processes, depositional systems and the possible source areas. Due to the shallow depth of the studied area, a second approach based on the geophysical measurement using seismic refraction and tomography was applied. This method provided information mainly about the geometry of these systems, the position of the sediments within them and highlighted where the main changes in the sediment texture and composition occurred. Integration of both methods allows us to obtain a more precise image of the subsurface, which contributes to a better understanding and prediction of the occurring sediments in the studied area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen JRL (1965) A review of the origin and characteristics of recent alluvial sediments. Sedimentology 5:89–191

    Article  Google Scholar 

  • Amireh B (2015) Grain size analysis of the Lower Cambrian–Lower Cretaceous clastic sequence of Jordan: sedimentological and paleo-hydrodynamical implications. J Asian Earth Sci 97:67–88

    Article  Google Scholar 

  • Benvenuti M, Martini IP (2002) Analysis of terrestrial hyperconcentrated flows and their deposits. In: Flood and megaflood processes and deposits: recent and ancient examples. Spec. Publ. Int. Assoc. Sed., vol 32, pp 167–93

  • Blair TC, McPherson JG (2009) Processes and forms of alluvial fans. In: Parsons AJ, Abrahams AD (eds) Geomorphology of desert environments, 2nd edn. Springer, Berlin, pp 412–467. doi:10.1007/978-1-4020-5719-9J4

    Google Scholar 

  • Boggs S Jr (2009) Petrology of sedimentary rocks, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Cheetham MD, Keene AF, Bush RT, Sullivan LA, Erskine WD (2008) A comparison of grain-size analysis methods for sand-dominated fluvial sediments. Sedimentology 55:1905–1913

    Article  Google Scholar 

  • DeCelles PG, Gray MB, Ridgway KD, Cole RB, Pivnik DA, Pequera N, Srivastava P (1991) Controls on synorogenic alluvial-fan architecture, Beartooth Conlomerate (Paleocene), Wyoming and Montana. Sedimentology 38:567–590

    Article  Google Scholar 

  • Folk RL, Ward WC (1957) Brazos River bar: a study in the significance of grain size parameters. J Sedimentar Petrol 27:3–26

    Article  Google Scholar 

  • Harvey AM, Mather AE, Stokes M (2005) Alluvial fans: geomorphology, sedimentology, dynamics—introduction. A review of alluvial-fan research. In: Harvey AM, Mather AE, Stokes M (eds) Alluvial fans: geomorphology, sedimentology, dynamics. Geological Society, London, Special Publications, vol 251, pp 1–7

  • Heward AP (1978) Alluvial fan and lacustrine sediments from the Stephanian A and B (La Magdalena, Cinera-Matallana and Sabero) coalfields, northern Spain. Sedimentology 25(4):451–488

    Article  Google Scholar 

  • Johnson AM (1970) Physical processes in geology. Freeman Cooper, San Francisco

    Google Scholar 

  • Johnson AM (1984) Debris flow. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, Chichester, pp 257–361

    Google Scholar 

  • Kaličiak M, Baňacký V, Jacko S, Janočko J, Karoli S, Molnár J, Petro Ľ, Priechodská Z, Syčev V, Škvarka L, Vozár J, Zlinská A, Žec B (1991) Vysvetlivky ku geologickej mape severnej časti Slanských vrchov a Košickej kotliny, 1: 50 000. Bratislava, GÚDŠ, 231, ISBN:80-85314-11-8

  • Kaličiak M, Baňacký V, Janočko J, Karoli S, Petro Ľ, Spišák Z, Vozár J, Žec B (1996a) Geologická mapa Slanských vrchov a Košickej kotliny-južná časť, M 1:50 000, Regionálne geologické mapy, Vydavateľstvo Dionýza Štúra, Bratislava, Ministerstvo životného prostredia Slovenskej republiky, Geologická služba SR, ISBN:80-85314-63-0

  • Kaličiak M, Baňacký V, Dubéciová S, Jacko S, Janočko J, Jetel J, Karoli S, Petro Ľ, Spišák Z, Syčev V, Zlinská A, Žec B (1996b) Vysvetlivky ku Geologickej mape Slanských vrchov a Košickej kotliny-južná časť, M 1:50 000, Vydavateľstvo Dionýza Štúra, Bratislava, ISBN:80-85314-58-4

  • Kim SB, Chough SK, Chun SS (1995) Bouldery deposits in the lowermost part of the Cretaceous Kyokpori Formation, SW Korea: Cohesionless debris flows and debris falls on a steep-gradient delta slope. Sed Geol 98:97–119

    Article  Google Scholar 

  • Komatsubara J (2004) Fluvial architecture and sequence stratigraphy of the Eocene to Oligocene Iwaki Formation, northeast Japan: channel fills related to the sea-level change. Sediment Geol 168:109–123

    Article  Google Scholar 

  • Kováč M, Nagymaros A, Oszczypko N, Ślączka A, Csontos L, Marunteanu M, Matenco L, Márton M (1998) Palinspastic reconstruction of the Carpathian-Pannonian region during the Miocene. In: Rakús M (ed) Geodynamic development of the Western Carpathians. Geol. Surv. Slovak Rep, Bratislava, pp 189–217

    Google Scholar 

  • Kumar R, Suresh N, Sangode SJ, Kumaravel V (2007) Evolution of the Quaternary alluvial fan system in the Himalayan foreland basin: implications for tectonic and climate decoupling. Quat Int 159:6–20

    Article  Google Scholar 

  • Lavigne F, Thouret JC (2002) Sediment transportation and deposition by rain-triggered lahars at Merapi Volcano, Central Java, Indonesia. Geomorphology 49:45–69

    Article  Google Scholar 

  • Lowe DR (1982) Sediment gravity flows, II. Depositional models with special reference to the deposits of high-density turbidity currents. J Sed Petrol 52:279–297

    Google Scholar 

  • Lexa J, Bezák V, Elečko M, Mello J, Polák M, Potfaj M, Vozár J (2000) Geological map of the Western Carpathians and adjacent areas 1: 500 000. Ministry of the Environment of Slovak Republic. Geological Survey of Slovac Republic, Bratislava

    Google Scholar 

  • Major JJ (1997) Depositional processes in large-scale debris-flow experiments. J Geol 105:345–366

    Article  Google Scholar 

  • Nemec W (2009) What is a hyperconcentrated flow? Lecture abstract, annual meeting of th IAS, Alghero (Spain), 20–23 Sept 2009

  • Nemec W, Steel RJ (1984) Alluvial and coastal conglomerates: their significant features and some comments on gravelly-mass flow deposits. Sedimentology of gravels and conglomerates. In: Koester EH, Steel RJ (eds) Can. Soc. Petrol. Geol., Mem. 10, pp 1–31

  • Pierson TC (1970) Hyperconcentrated flow-transitional process between water flow and debris flow. In: Jakob M, Hunger O (eds) Debris-flow hazards and related phenomena, Praxis. Springer, Berlin, pp 159–202

    Google Scholar 

  • Pierson TC, Costa JE (1987) A rheologic classification of subaerial sediment-water flows. Geol Soc Am Rev Eng Geol 7:1–12

    Article  Google Scholar 

  • Polák M, Jacko S, Vozárová A, Vozár J, Gross P, Harčár J, Sasvári T, Zacharov M, Baláž B, Kaličiak M, Karoli S, Nagy A, Buček S, Maglay J, Spišák Z, Žec B, Filo I, Janočko J (1996) Geologická mapa Braniska a Čiernej Hory 1:50 000. Vydavateľstvo Dionýza Śtúra, Bratislava

    Google Scholar 

  • Polák M, Jacko S, Vozárová A, Vozár J, Gross P, Harčár J, Zacharov M, Baláž B, Liščák P, Malík P, Zakovič M, Karoli S, Kaličiak M (1997) Vysvetlivky ku geologickej mape Braniska a Čiernej Hory 1:50 000. Vydavateľstvo Dionýza Śtúra, Bratislava

    Google Scholar 

  • Powers MC (1953) A new roundness scale for sedimentary particles. J Sediment Petrol 23:117–119

    Article  Google Scholar 

  • Remaitre A, Malet JP, Maquaire O (2005) Morphology and sedimentology of a complex debris flow in clay-shale basin. Earth Surf Process Landf 30:339–348

    Article  Google Scholar 

  • Serra O (1985) Sedimentary environments from wireline logs. Schlumberger, Houston

    Google Scholar 

  • Skaberne D (1996) Interpretation of depositional environment based on grain size distribution of sandstones of the Val Gardena Formation in the area between Cerkno and Smrečje, Slovenia. Geologija 39:193–214

    Article  Google Scholar 

  • Sohn YK (1997) On traction-carpet sedimentation. J Sediment Res 67:502–509

    Google Scholar 

  • Sohn YK, Rhee C, Kim BCh (1999) Debris flow and hyperconcentrated flood-flow deposits in an alluvial fan, northwestern part of the cretaceous Yongdong Basin, Central Korea. J Geol 109:111–132

    Article  Google Scholar 

  • Torres-Rondon L, Carriere SD, Chalikakis K, Valles V (2013) An integrative geological and geophysical approach to characterize a superficial deltaic aquifer in the Camargue plain, France. C R Geosci 345:241–250

    Article  Google Scholar 

  • Tucker EM (2003) Sedimentary rocks in the field, 3rd edn. Wiley, Chichester

    Google Scholar 

  • Wagreich M, Strauss PE (2005) Source area and tectonic control on alluvial-fan development in the Miocene Fohnsdorf intramontane basin, Austria. In: Harvey AM, Mather AE, Stokes M (eds) Alluvial fans: geomorphology, sedimentology, dynamics. Geological Society, London, Special Publications, vol 251, pp 207–216

  • Wentworth CK (1922) A scale of grade and class terms for clastic sediments. J Geol 30:377–392

    Article  Google Scholar 

  • Yagishita K (1997) Paleocurrent and fabric analyses of fluvial conglomerates of the Paleogene Noda Group, northeast Japan. Sediment Geol 109:53–71

    Article  Google Scholar 

Download references

Acknowledgements

This publication is the result of the Project implementation: Research centre for efficient integration of the renewable energy sources, ITMS: 26220220064 supported by the Research and Development Operational Programme funded by the ERDF (European Regional Development Fund). We are grateful for the constructive comments of the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Prekopová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prekopová, M., Janočko, J., Budinský, V. et al. Integration of seismic and sedimentological methods for analysis of Quaternary alluvial depositional systems. Environ Earth Sci 76, 25 (2017). https://doi.org/10.1007/s12665-016-6345-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6345-3

Keywords

Navigation