Skip to main content
Log in

The coupled non-isothermal, multiphase-multicomponent flow and reactive transport simulator OpenGeoSys–ECLIPSE for porous media gas storage

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Numerical simulations are a viable tool to gain insights into complex coupled THMC processes prevailing in many geoscientific applications. In this work, a coupling approach for OpenGeoSys and ECLIPSE is presented, which combines the multiphase flow simulations of ECLIPSE with heat and reactive geochemical component transport simulations of OpenGeoSys. The coupled simulator is capable of dealing with multiphase-multicomponent systems with no specific limitations regarding the components used. Furthermore, thermal effects like the Joule–Thomson effect and geochemical feedback on fluid flow and mass transport are accounted for by the coupled simulator. The developed coupled code is validated in a series of benchmarks. It is found that the results of the coupled simulator are in very close agreement with those obtained from the reference simulations with the relative errors being smaller than 0.00001, 0.0002 and 0.003 % for phase pressures, saturations and component concentrations, respectively. Validation of the thermal coupling of the simulators shows the same good agreement, if no thermal feedback on fluid flow is considered with a maximum relative error of 0.0015 %. Including thermal feedback on fluid flow shows increased relative differences of up to 0.3 % due to the slightly different equations of states used in the simulators. Given the good accuracy of the validation runs, the coupled code can thus now be applied for reservoir simulations of coupled processes occurring in the subsurface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ballarini E, Beyer C, Bauer RB, Griebler C, Bauer S (2014) Model based evaluation of a contaminant plume development under aerobic and anaerobic conditions in 2D bench-scale tank experiments. Biodegradation 25:351–371. doi:10.1007/s10532-013-9665-y

    Article  Google Scholar 

  • Bauer S, Beyer C, Kolditz O (2006) Assessing measurement uncertainty of first-order degradation rates in heterogeneous aquifers. Water Resour Res 42:W01420. doi:10.1029/2004WR003878

    Article  Google Scholar 

  • Bauer S, Beyer C, Dethlefsen F, Dietrich P, Duttmann R, Ebert M, Feeser V, Görke U, Köber R, Kolditz O, Rabbel W, Schanz T, Schäfer D, Würdemann H, Dahmke A (2013) Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environ Earth Sci 70:3935–3943. doi:10.1007/s12665-013-2883-0

    Article  Google Scholar 

  • Bear J, Bachmat Y (1990) Introduction to modelling of transport phenomena in porous media. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Benisch K, Bauer S (2013) Short- and long-term regional pressure build-up during CO2 injection and its applicability for site monitoring. Int J Greenh Gas Control 13:220–233. doi:10.1016/j.ijggc.2013.09.002

    Article  Google Scholar 

  • Benisch K, Graupner B, Bauer S (2013) The coupled OpenGeoSys–Eclipse simulator for simulation of CO2 storage—code comparison for fluid flow and geomechanical processes. Energy Procedia 37:3663–3671. doi:10.1016/j.egypro.2013.06.260

    Article  Google Scholar 

  • Beyer C, Bauer S, Kolditz O (2006) Uncertainty assessment of contaminant plume length estimates in heterogeneous aquifers. J Contam Hydrol 87:73–95. doi:10.1016/j.jconhyd.2006.04.006

    Article  Google Scholar 

  • Beyer C, Konrad W, Rügner H, Bauer S, Liedl R, Grathwohl P (2009) Model-based prediction of long-term leaching of contaminants from secondary materials in road constructions and noise protection dams. Waste Manag 29:839–850. doi:10.1016/j.wasman.2008.06.025

    Article  Google Scholar 

  • Beyer C, Li D, De Lucia M, Kühn M, Bauer S (2012) Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part II: coupled reactive transport simulation. Environ Geol 67:573–588. doi:10.1007/s12665-012-1684-1

    Google Scholar 

  • Boockmeyer A, Bauer S (2014) High-temperature heat storage in geological media: high resolution simulation of near-borehole processes. Géotech Lett 4:151–156. doi:10.1680/geolett.13.00060

    Article  Google Scholar 

  • Börgesson L (1996) AQAQUS. Dev Geotech Eng 79:565–570. doi:10.1016/S0165-1250(96)80047-2

    Article  Google Scholar 

  • Böttcher N, Singh AK, Kolditz O, Liedl R (2012) Non-isothermal, compressible gas flow for the simulation of an enhanced gas recovery application. J Comput Appl Math 236:4933–4943. doi:10.1016/j.cam.2011.11.013

    Article  Google Scholar 

  • Diersch HJ (2014) FEFLOW—finite element modeling of flow, mass and heat transport in porous and fractured media. Arch Microbiol 149:350–357. doi:10.1007/978-3-642-38739-5

    Google Scholar 

  • Flemisch S, Darcis M, Erbertseder K, Faigle B, Lauser B, Mosthaf K, Muthin S, Nuske P, Tatomir A, Wolff M, Helmig R (2011) DuMuX: DUNE for multi-{phase, component, scale, physics,…} flow and transport in porous media. Adv Water Resour 34:1102–1112. doi:10.1016/j.advwatres.2011.03.007

    Article  Google Scholar 

  • Freiboth S, Class H, Helmig R, Graf T, Ehlers W, Schwarz V, Vrettos C (2009) A model for multiphase flow and transport in porous media including a phenomenological approach to account for deformation—a model concept and its validation within a code intercomparison study. Comput Geosci 13:281–300. doi:10.1007/s10596-008-9118-6

    Article  Google Scholar 

  • Graupner B, Li D, Bauer S (2011) The coupled simulator ECLIPSE–OpenGeoSys for the simulation of CO2 storage in saline formations. Energy Procedia 4:3794–3800. doi:10.1016/j.egypro.2011.02.314

    Article  Google Scholar 

  • Hagemann B, Rasoulzadeh M, Panfilov M, Ganzer L, Reitenbach V (2015) Hydrogenization of underground storage of natural gas. Comput Geosci 19:1–12. doi:10.1007/s10596-015-9515-6

    Article  Google Scholar 

  • He W, Beyer C, Fleckenstein JH, Jang E, Kolditz O, Naumov D, Kalbacher T (2015) A parallelization scheme to simulate reactive transport in the subsurface environment with OGS#IPhreeqc 5.5.7-3.1.2. Geosci Model Dev 8:3333–3348. doi:10.5194/gmd-8-3333-2015

    Article  Google Scholar 

  • Hein P, Kolditz O, Görke UW, Bucher A, Shao H (2016) A numerical study on the sustainability and efficiency of borehole heat exchanger coupled ground source heat pump systems. Appl Therm Eng 100:421–433. doi:10.1016/j.applthermaleng.2016.02.039

    Article  Google Scholar 

  • Jessen K, Kovscek AR, Orr FM Jr (2005) Increasing CO2 storage in oil recovery. Energy Convers Manag 46:293–311. doi:10.1016/j.enconman.2004.02.019

    Article  Google Scholar 

  • Johnston HL, Bezman II, Hood CB (1946) Joule–Thomson effects in hydrogen at liquid air and at room temperatures. J Am Chem Soc 68:2367–2373. doi:10.1021/ja01215a069

    Article  Google Scholar 

  • Joule JP, Thomson W (1854) On the thermal effects of fluids in motion. Part II. Philos Trans R Soc Lond 144:321–364. doi:10.1098/rstl.1854.0016

    Article  Google Scholar 

  • Kempka T, Kühn M, Class H, Frykmann P, Kopp A, Nielsen CM, Probst P (2010) Modelling of CO2 arrival time at Ketzin—part I. Int J Greenhouse Gas Control 4:1007–1015. doi:10.1016/j.ijggc.2010.07.005

    Article  Google Scholar 

  • Kolditz O, Bauer S (2004) A process-oriented approach to computing multifield problems in porous media. J Hydroinform 6:225–244

    Google Scholar 

  • Kolditz O, Bauer S, Böttcher N, Elsworth D, Görke UJ, McDermott CI, Park CH, Singh AK, Taron J, Wang W (2012) Numerical simulation of two-phase flow in deformable porous media: application to carbon dioxide storage in the subsurface. Math Comput Simul 82:1919–1935. doi:10.1016/j.matcom.2012.06.010

    Article  Google Scholar 

  • Kolditz O, Shao H, Wang W, Bauer S (eds) (2015) Thermo-hydro-mechanical-chemical processes in fractures porous media: modelling and benchmarking, closed-form solutions. Springer, Heidelberg. doi:10.1007/978-3-319-11894-9

    Google Scholar 

  • Kolditz O, Görke UJ, Shao H, Wang W, Bauer S (eds) (2016) Thermo-hydro-mechanical-chemical processes in fractures porous media: modelling and benchmarking, benchmarking initiatives. Springer, Heidelberg. doi:10.1007/978-3-319-29224-3

    Google Scholar 

  • Kosakowski G, Watanabe N (2014) OpenGeoSys-Gem: a numerical tool for calculating geochemical and porosity changes in saturated and partially saturated media. Phys Chem Earth 70–71:138–149. doi:10.1016/j.pce.2013.11.008

    Article  Google Scholar 

  • Kroniger D, Madlener R (2014) Hydrogen storage for wind parks: a real options evaluation for an optimal investment in more flexibility. Appl Energy 136:931–946. doi:10.1016/j.apenergy.2014.04.041

    Article  Google Scholar 

  • Li D, Bauer S, Benisch K, Graupner B, Beyer C (2014) OpenGeoSys-ChemApp: a coupled simulator for reactive transport in multiphase systems and application to CO2 storage formation in Northern Germany. Acta Geotech 9:67–79. doi:10.1007/s11440-013-0234-7

    Article  Google Scholar 

  • Ma X, Gildin E, Plaksina T (2015) Efficient optimization framework for integrated placement of horizontal wells and hydraulic fracture stages in unconventional gas reservoirs. J Unconv Oil Gas Resour 9:1–17. doi:10.1016/j.juogr.2014.09.001

    Article  Google Scholar 

  • McDermott CI, Randriamanjatosoa ARL, Tenzer H, Kolditz O (2006) Simulation of heat extraction from crystalline rocks: the influence of coupled processes on differential reservoir cooling. Geothermics 35:321–344. doi:10.1016/j.geothermics.2006.05.002

    Article  Google Scholar 

  • Michels A, de Graaf W, Wolkers GJ (1964) Thermodynamic properties of hydrogen and deuterium at temperatures between −175 °C and 150 °C and at densities up to 2500 atmospheres. Appl Sci Res Sect A 12:9–32. doi:10.1007/BF03184744

    Google Scholar 

  • Oldenburg C (2003) Carbon dioxide as cushion gas for natural gas storage. Energy Fuel 17:240–246. doi:10.1021/ef020162b

    Article  Google Scholar 

  • Oldenburg C (2007) Joule–Thomson cooling due to CO2 injection into natural gas reservoirs. Energy Convers Manag 48:1808–1815. doi:10.1016/j.enconman.2007.01.010

    Article  Google Scholar 

  • Oldenburg C, Pan L (2013) Utilization of CO2 as cushion gas for porous media compressed air energy storage. Greenh Gases Sci Technol 3:1–12. doi:10.1002/ghg.1332

    Article  Google Scholar 

  • Onaisi A, Samier P, Koutsabeloulis N, Longuemare P (2002) Management of stress sensitive reservoirs using two coupled stress-reservoir simulation tools : ECL2VIS and ATH2VIS. Soc Pet Eng. doi:10.2118/78512-MS

    Google Scholar 

  • Panfilov M (2010) Underground storage of hydrogen: in situ self-organization and methane generation. Transp Porous Med 85:841–865. doi:10.1007/s11242-010-9595-7

    Article  Google Scholar 

  • Pruess K (2004) The TOUGH codes—a family of simulation tools for multiphase flow and transport processes in permeable media. Vadose Zone J 3:738–746. doi:10.2136/vzj2004.0738

    Google Scholar 

  • Rutqvist J, Wu YS, Tsang CF, Bodvarsson G (2002) A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int J Rock Mech Min Sci 39:429–442. doi:10.1016/S1365-1609(02)00022-9

    Article  Google Scholar 

  • Schlumberger NV (2015) ECLIPSE v2015.2—technical description

  • Shao H, Kosakowski G, Berner U, Kulik D, Mäder U, Kolditz O (2013) Reactive transport modeling of clogging process at Maqarin natural analogue site. Phys Chem Earth 64:21–31. doi:10.1016/j.pce.2013.01.002

    Article  Google Scholar 

  • Singh A, Delfs JO, Görke UW, Kolditz O (2014) Towards physical aspects affecting a possible leakage of geological storage CO2 into the shallow subsurface. Acta Geotech 9:81–86. doi:10.1007/s11440-013-0237-4

    Article  Google Scholar 

  • Sørensen B (1975) Energy and resources. Science 189:255–260. doi:10.1126/science.189.4199.255

    Article  Google Scholar 

  • Taron J, Elsworth D (2009) Thermal-hydrologic-chemical processes in the evolution of engineered geothermal reservoirs. Int J Rock Mech Min Sci 46:855–864. doi:10.1016/j.ijrmms.2009.01.007

    Article  Google Scholar 

  • VDI (2010) Thermal use of the underground: fundamentals, approvals, environmental aspects. VDI4640. Verein Deutscher Ingenieure e.V., Düsseldorf

  • Wagner W, Cooper JR, Dittmann A, Kijima J, Kretzschmar HJ, Kruse A, Mareš R, Oguchi K, Sato H, Stöcker I, Šifner O, Takaishi Y, Tanishita I, Trübenbach J, Willkommen Th (2000) The IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam. J Eng Gas Turbines Power 122:150–184. doi:10.1115/1.483186

    Article  Google Scholar 

  • Xie M, Bauer S, Kolditz O, Nowak T, Shao H (2006) Numerical simulation of reactive processes in an experiment with partially saturated bentonite. J Contam Hydrol 83:122–147. doi:10.1016/j.jconhyd.2005.11.003

    Article  Google Scholar 

Download references

Acknowledgments

The presented work is part of the ANGUS+ research project (www.angusplus.de). We gratefully acknowledge the funding of this project provided by the Federal Ministry of Education and Research (BMBF) under Grant number 03EK3022 through the energy storage funding initiative “Energiespeicher” of the German Federal Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. T. Pfeiffer.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Subsurface Energy Storage”, guest edited by Sebastian Bauer, Andreas Dahmke, and Olaf Kolditz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfeiffer, W.T., Graupner, B. & Bauer, S. The coupled non-isothermal, multiphase-multicomponent flow and reactive transport simulator OpenGeoSys–ECLIPSE for porous media gas storage. Environ Earth Sci 75, 1347 (2016). https://doi.org/10.1007/s12665-016-6168-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6168-2

Keywords

Navigation