Skip to main content

Advertisement

Log in

Assessment of nitrogen inputs and yields in the Cibolo and Dry Comal Creek watersheds using the SWAT model, Texas, USA 1996–2010

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Identifying sources of nitrogen input and nitrogen yield to waterways are important aspects of watershed management. A Soil and Water Assessment Tool (SWAT) model was developed for the Cibolo and Dry Comal Creek watersheds in south central Texas, USA to assess how individual nitrogen source categories contribute to nitrogen yield. The model includes nitrogen inputs from atmospheric deposition, fertilizer, manure, a wastewater treatment plant (WWTP), and on-site sewage facilities (OSSFs). Model calibration was successful with all model performance parameters rated satisfactory or better except for percent bias (PBIAS) during the streamflow calibration period in Cibolo Creek. The high PBIAS value likely resulted from the model underestimating streamflow during two flood events coupled with potential measurement errors for the observed streamflow values during the floods. The largest contributors to nitrogen input were livestock (42.0 %), atmospheric deposition (26.8 %), deer (9.9 %), and farm fertilizer use (9.7 %). The largest contributors to nitrogen yield were atmospheric deposition (56.3 % of nitrogen yield), livestock (25.9 %), and the WWTP (7.1 %). The difference in ranking between nitrogen inputs and nitrogen yields occurred because the percentage of nitrogen input that becomes nitrogen yield varied with source. The WWTP (100 % of the WWTP nitrogen input became nitrogen yield) was highest because it directly discharged to the waterway. The WWTP was followed by feral hogs (8.0 %), atmospheric deposition (5.8 %), and waterfowl (2.1 %). These results provide a source-by-source assessment of nitrogen inputs and their corresponding yields allowing watershed managers to better assess nitrogen management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbaspour KC (2014) SWAT-CUP, 2012th edn. Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf

    Google Scholar 

  • Ahmad HMN, Sinclair A, Jamieson R, Madani A, Hebb D, Havard P, Yiridoe EK (2011) Modeling sediment and nitrogen export from a rural watershed in eastern Canada using the soil and water assessment tool. J Environ Qual 40:1182. doi:10.2134/jeq2010.0530

    Article  Google Scholar 

  • Akhavan S, Abedi-Koupai J, Mousavi S-F, Afyuni M, Eslamian S-S, Abbaspour KC (2010) Application of SWAT model to investigate nitrate leaching in Hamadan–Bahar Watershed, Iran. Agric Ecosyst Environ 139:675–688. doi:10.1016/j.agee.2010.10.015

    Article  Google Scholar 

  • Arnold JG et al (2012) SWAT: model use, calibration, and validation. Trans ASABE 55:1491–1508. doi:10.13031/2013.42256

    Article  Google Scholar 

  • AVMA (2012) US pet ownership and demographic sourcebook: 2012 edition. American Veterinary Medical Association, Schaumburg

    Google Scholar 

  • Bean B (2010) Corn development and key growth stages. Texas AgriLife Extension Service, Amarillo

    Google Scholar 

  • Bean B, McFarland M (2008) Getting the most out of your nitrogen fertilization in corn. Texas AgriLife Extension Service, Amarillo

    Google Scholar 

  • Billen G et al (2011) Nitrogen flows from European regional watersheds to coastal marine waters. In: Sutton MA, Howard CM, Erisman JW (eds) European nitrogen assessment: sources, effects and policy perspectives. Cambridge University Press, Cambridge, pp 271–297. doi:10.1017/CBO9780511976988.016

  • Boithias L, Srinivasan R, Sauvage S, Macary F, Sánchez-Pérez JM (2014) Daily nitrate losses: implication on long-term river quality in an intensive agricultural catchment of southwestern france. J Environ Qual 43:46–54. doi:10.2134/jeq2011.0367

    Article  Google Scholar 

  • Bouraoui F, Benabdallah S, Jrad A, Bidoglio G (2005) Application of the SWAT model on the Medjerda river basin (Tunisia). Phys Chem Earth Parts A/B/C 30:497–507. doi:10.1016/j.pce.2005.07.004

    Article  Google Scholar 

  • De Girolamo AM, Lo Porto A, Oueslati O (2010) Modeling nutrient balances in the Rio Mannu basin and scenario analysis of the impact of fertilizer reduction. Fresenius Environ Bull 19:1854–1861

    Google Scholar 

  • Dinerstein E, Dublin HT (1982) Daily defecation rate of captive axis deer. J Wildl Manag 46:833–835. doi:10.2307/3808586

    Article  Google Scholar 

  • Dunn EH et al (2005) Enhancing the scientific value of the christmas bird count. Auk 122:338–346. doi:10.2307/4090371

    Article  Google Scholar 

  • EAA (2015) Comal springs daily discharge. http://www.edwardsaquifer.org/aquifer-data-and-maps/historical-data/historic-data-downloads. Accessed 4 Jan 2015

  • Grigal DF (2012) Atmospheric deposition and inorganic nitrogen flux water. Air Soil Pollut 223:3565–3575. doi:10.1007/s11270-012-1128-2

    Article  Google Scholar 

  • Grizzetti B, Bouraoui F, De Marsily G (2005) Modelling nitrogen pressure in river basins: a comparison between a statistical approach and the physically-based SWAT model. Phys Chem Earth Parts A/B/C 30:508–517. doi:10.1016/j.pce.2005.07.005

    Article  Google Scholar 

  • Groffman PM, Law NL, Belt KT, Band LE, Fisher GT (2004) Nitrogen fluxes and retention in urban watershed ecosystems. Ecosystems 7:393–403. doi:10.2307/3658825

    Google Scholar 

  • Gronberg JM, Spahr NE (2012) County-level estimates of nitrogen and phosphorus from commercial fertilizer for the conterminous United States, 1987–2006. US Geological Survey, Reston

    Google Scholar 

  • Gupta H, Sorooshian S, Yapo P (1999) Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. J Hydrol Eng 4:135–143. doi:10.1061/(ASCE)1084-0699(1999)4:2(135)

    Article  Google Scholar 

  • Han W, Yang Z, Di L, Yue P (2014) A geospatial web service approach for creating on-demand cropland data layer thematic maps. Trans ASABE 57:239–247. doi:10.13031/trans.57.10020

    Google Scholar 

  • HDR (2009) Cibolo Creek water quality monitoring and modeling. City of Boerne, Boerne

    Google Scholar 

  • Hitt KJ (2008) Enhanced national land cover data 1992 revised with 1990 and 2000 population data to indicate urban development between 1992 and 2000 (NLCDep0306). http://water.usgs.gov/GIS/metadata/usgswrd/XML/nlcdep0306.xml. Accessed 19 March 2014

  • Ioka M, Takahashi M, Chiba S (2008) Estimation of the load of total nitrogen and total phosphorus in the enclosed bay watershed using GIS. In: Geoscience and remote sensing symposium, 2008. IGARSS 2008. IEEE International, 7–11 July 2008, pp III-1374–III-1377. doi:10.1109/IGARSS.2008.4779616

  • James J (2012) OSSF_Permits_Matched.shp. Bexar County Engineer’s Office, San Antonio

  • Jenks JA, Soper RB, Lochmiller RL, Leslie DM Jr (1990) Effect of exposure on nitrogen and fiber characteristics of white-tailed deer feces. J Wildl Manag 54:389–391. doi:10.2307/3809644

    Article  Google Scholar 

  • Jeon JH, Yoon CG, Ham JH, Jung KW (2006) Evaluation of BASINS/WinHSPF applicability for pollutant loading estimation for a Korean watershed. Water Sci Technol 53:25–32. doi:10.2166/wst.2006.004

    Article  Google Scholar 

  • Jeong J, Kannan N, Arnold JG (2014) Effects of urbanization and climate change on stream health in North-Central Texas. J Environ Qual 43:100–109. doi:10.2134/jeq2011.0345

    Article  Google Scholar 

  • Kamler J, Homolka M, Kráčmar S (2003) Nitrogen characteristics of ungulates faeces: effect of time of exposure and storage. Folia Zool 52(1):31–35

    Google Scholar 

  • Kochenower R, Larson K, Bean B, Kenny N, Martin K (2011) United sorghum checkoff program: high plains production handbook. Lubbock, TX

    Google Scholar 

  • Lam QD, Schmalz B, Fohrer N (2010) Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model. Agric Water Manag 97:317–325. doi:10.1016/j.agwat.2009.10.004

    Article  Google Scholar 

  • Lam QD, Schmalz B, Fohrer N (2012) Assessing the spatial and temporal variations of water quality in lowland areas, Northern Germany. J Hydrol 438–439:137–147. doi:10.1016/j.jhydrol.2012.03.011

    Article  Google Scholar 

  • Leeming R, Ball A, Ashbolt N, Nichols P (1996) Using faecal sterols from humans and animals to distinguish faecal pollution in receiving waters. Water Res 30:2893–2900. doi:10.1016/S0043-1354(96)00011-5

    Article  Google Scholar 

  • Li X, Ambrose RB, Araujo R (2004) Modeling mineral nitrogen export from a forest terrestrial ecosystem to streams. Trans ASAE 47:727–739. doi:10.13031/2013.16105

    Article  Google Scholar 

  • Link WA, Sauer JR, Niven DK (2006) A Hierarchical model for regional analysis of population change using christmas bird count data, with application to the American black duck. The Condor 108:13–24. doi:10.2307/4123193

    Article  Google Scholar 

  • Lockwood M (2006) White-tailed deer population trends. Texas Parks and Wildlife Department, Austin

    Google Scholar 

  • McCarthy B, Geerts SM, Axler R, Henneck J (2001) Performance of an aerobic treatment unit and drip dispersal system for the treatment of domestic wastewater at the Northeast Regional Correction Center. Natural Resources Research Institute, Duluth

    Google Scholar 

  • Menne MJ, Durre I, Vose RS, Gleason BE, Houston TG (2012) An overview of the global historical climatology network-daily database. J Atmos Ocean Technol 29:897–910. doi:10.1029/2007JD008510. doi:10.1007/BF01095146. doi:10.1029/2003GL018624

  • Mishra A, Singh R, Singh VP (2010) Evaluation of non-point source n and p loads in a small mixed land use land cover watershed. J Water Resour Prot 2:367–372. doi:10.4236/jwarp.2010.24042

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900. doi:10.13031/2013.23153

    Article  Google Scholar 

  • Musgrove M, Fahlquist L, Houston NA, Lindgren RJ, Ging PB (2010) Geochemical evolution processes and water-quality observations based on results of the National Water-Quality Assessment Program in the San Antonio segment of the Edwards aquifer, 1996–2006. U.S. Geological Survey, Reston

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • NASS (2010) field crops: usual planting and harvesting dates. USDA, Washington, DC

    Google Scholar 

  • NASS (2015) Quick stats. http://quickstats.nass.usda.gov/. Accessed 15 Feb 2015

  • National Atlas of the United States (2012) 1:1,000,000-scale streams of the united states. National Atlas of the United States, Rolla

    Google Scholar 

  • National Audubon Society (2012) The Christmas Bird Count Historical Results [Online]. http://www.christmasbirdcount.org. Accessed 16 Feb 2015

  • Nemiroff L, Patterson J (2007) Design, testing and implementation of a large-scale urban dog waste composting program. Compost Sci Utilization 15:237–242. doi:10.1080/1065657X.2007.10702339

    Article  Google Scholar 

  • NRCS (2013a) National Elevation Dataset 10 Meter 7.5x7.5 minute quadrangles. National Cartography & Geospatial Center, Fort Worth, TX

  • NRCS (2013b) Soil Survey Geographic (SSURGO) Database. U.S. Department of Agriculture. http://websoilsurvey.nrcs.usda.gov. Accessed 21 June 2014

  • OTSC (2014) Commercial fertilizer annual report. http://otscweb.tamu.edu/Reports/Annual.aspx. Accessed 6 April 2014

  • Panagopoulos Y, Makropoulos C, Baltas E, Mimikou M (2011) SWAT parameterization for the identification of critical diffuse pollution source areas under data limitations. Ecol Model 222:3500–3512. doi:10.1016/j.ecolmodel.2011.08.008

    Article  Google Scholar 

  • Pisinaras V, Petalas C, Gikas GD, Gemitzi A, Tsihrintzis VA (2010) Hydrological and water quality modeling in a medium-sized basin using the Soil and Water Assessment Tool (SWAT). Desalination 250:274–286. doi:10.1016/j.desal.2009.09.044

    Article  Google Scholar 

  • Plant Food Control Service (2014) monthly fertilizer tonnage report. http://aes.missouri.edu/pfcs/fert/index.stm. Accessed 23 April 2014

  • Qiu Z, Wang L (2014) Hydrological and water quality assessment in a suburban watershed with mixed land uses using the SWAT model. J Hydrol Eng 19:816–827. doi:10.1061/(ASCE)HE.1943-5584.0000858

    Article  Google Scholar 

  • Ruddy BC, Lorenz DL, Mueller DK (2006) County-level estimates of nutrient inputs to the land surface of the conterminous United States, 1982–2001. US Geological Survey, Reston

    Google Scholar 

  • Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057. doi:10.1002/hyp.6720

    Article  Google Scholar 

  • Salvetti R et al (2008) Modelling the point and non-point nitrogen loads to the Venice Lagoon (Italy): the application of water quality models to the Dese-Zero basin. Desalination 226:81–88. doi:10.1016/j.desal.2007.01.236

    Article  Google Scholar 

  • Santhi C, Srinivasan R, Arnold JG, Williams JR (2006) A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas. Environ Model Softw 21:1141–1157. doi:10.1016/j.envsoft.2005.05.013

    Article  Google Scholar 

  • Sauer JR, Hines JE, Fallon JE, Pardieck KL, Ziolkowski Jr. DJ, Link WA (2014) The North American Breeding Bird Survey, Results and Analysis 1966–2013. U.S. Geological Survey Patuxent Wildlife Research Center. http://www.mbr-pwrc.usgs.gov/bbs/. Accessed 16 Feb 2015

  • Sawyer TG, Marchinton RL, Lentz WM (1990) Defecation rates of female white-tailed deer in Georgia. Wildl Soc Bull 18:16–18. doi:10.2307/3782300

    Google Scholar 

  • Scanlon B, Healy R, Cook P (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39. doi:10.1007/s10040-001-0176-2

    Article  Google Scholar 

  • Schaefer SC, Hollibaugh JT, Alber M (2009) Watershed nitrogen input and riverine export on the west coast of the US. Biogeochemistry 93:219–233. doi:10.1007/s10533-009-9299-7

    Article  Google Scholar 

  • Schilling KE, Wolter CF (2009) Modeling nitrate–nitrogen load reduction strategies for the des moines river. Iowa Using SWAT Environ Manag 44:671–682. doi:10.1007/s00267-009-9364-y

    Google Scholar 

  • Sheppard LE (2013) 2012 annual summary. Illinois State Water Survey, Champaign

    Google Scholar 

  • Sij J, Belew M, Pinchak W (2011) Nitrogen management in no-till and conventional-till dual-use wheat/stocker systems. Tex J Agric Nat Resour 24:38–49

    Google Scholar 

  • Taylor GR II, Gray J (1999a) Maintaining Bermudagrass lawns. Texas A&M AgriLife Extension Service, College Station

    Google Scholar 

  • Taylor GR II, Gray J (1999b) Maintaining St. Augustine lawns. Texas A&M AgriLife Extension Service, College Station

    Google Scholar 

  • Taylor D, Hood R (2014) Cibolo preserve waterfowl monitoring. Cibolo Nature Center, Boerne

    Google Scholar 

  • TCEQ (2014a) City of Boerne WWTP DMR data. Austin

  • TCEQ (2014b) Sampling Data query, surface water quality monitoring. http://www.tceq.state.tx.us/waterquality/clean-rivers/data/samplequery.html. Accessed 23 and 28 Feb 2014

  • Thompson E (2013) Kendall county septic systems. Kendall County, Boerne

    Google Scholar 

  • Timmons JB, Higginbotham B, Cathey JC, Mellish J, Griffin J, Sumrall A, Skow K (2012) Feral hog population: growth, Density and Harvest in Texas. Texas A&M AgriLIFE Extension, College Station

    Google Scholar 

  • Twidwell E (2005) Planting and management practices for wheat and oats. LSU Agricultural Center, Baton Rouge (no date)

  • USACE (2005) National Inventory of Dams, Water Control Infrastructure (2005) U.S. Army Corps of Engineers in cooperation with FEMA’s National Dam Safety Program. http://www.nationalatlas.gov/atlasftp.html#dams00x. Accessed 26 Sept 2014

  • USCB (1992) Census of Population and Housing, 1990: Summary Tape File 3 on CD-ROM [machine-readable data files]. Washington, DC

  • USCB (2014a) 2000 Census; Summary File 1, Table H001; generated by Tim Sullivan; using American FactFinder. http://factfinder2.census.gov. Accessed 18 April 2014

  • USCB (2014b) 2000 Census; Summary File 1, Table P001; generated by Tim Sullivan; using American FactFinder. http://factfinder2.census.gov. Accessed 12 Sept 2014

  • USCB (2014c) Census 2010, Summary File 1, Table DP-1; generated by Tim Sullivan; using American FactFinder. http://factfinder2.census.gov. Accessed 24 April 2014

  • USCB (2014d) Census 2010, Summary File 1, Table H-1; generated by Tim Sullivan; using American FactFinder. http://factfinder2.census.gov. Accessed 18 April 2014

  • USCB (2014e) Census Explorer. US Census Bureau. http://www.census.gov/censusexplorer/censusexplorer.html. Accessed 10 March 2014

  • USDA (2009) Texas State and County Data Volume 1. Geographic Area Series. Part 43B. US Department of Agriculture, Washington DC

  • USDA (2014) Texas State and County Data Volume 1. Geographic Area Series. Part 43B. U.S. Department of Agriculture, Washington, DC

  • USEPA SAB (2011) Reactive nitrogen in the United States: an analysis of inputs, flows, consequences, and management options. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (2015) Clean Air Status and Trends Network (CASTNET). http://epa.gov/castnet/javaweb/index.html. Accessed 15 Feb 2015

  • USGS (2014) USGS water data for the nation. http://waterdata.usgs.gov/nwis. Accessed 27 Oct 2014

  • Vallejo A, Díez J, López-Valdivia L, Cartagena M, Tarquis A, Hernáiz P (2004) Denitrification from an irrigated soil fertilized with pig slurry under Mediterranean conditions. Biol Fertil Soils 40:93–100. doi:10.1007/s00374-004-0742-6

    Article  Google Scholar 

  • Wilson T (2013) Comal county septic systems. Comal County Engineer’s Office, New Braunfels

    Google Scholar 

  • Wu Y, Chen J (2009) Simulation of nitrogen and phosphorus loads in the Dongjiang River basin in South China using SWAT. Front Earth Sci China 3:273–278. doi:10.1007/s11707-009-0032-6

    Article  Google Scholar 

  • Wu Y, Chen J (2013) Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in South China. Ecol Ind 32:294–304. doi:10.1016/j.ecolind.2013.04.002

    Article  Google Scholar 

  • Wu L, Long T-Y, Cooper W (2012) Simulation of spatial and temporal distribution on dissolved non-point source nitrogen and phosphorus load in Jialing River watershed. China Environ Earth Sci 65:1795–1806. doi:10.1007/s12665-011-1159-9

    Article  Google Scholar 

  • Yen H, Bailey RT, Arabi M, Ahmadi M, White MJ, Arnold JG (2014) The role of interior watershed processes in improving parameter estimation and performance of watershed models. J Environ Qual 43:1601–1613. doi:10.2134/jeq2013.03.0110

    Article  Google Scholar 

Download references

Acknowledgments

Tim Sullivan would like to thank Dr. Vicky Sullivan, for her support. He would also like to thank Dr. Dutton, Dr. Giacomoni, Dr. Montoya, and Dr. Sharif for their assistance as members of his doctoral committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy P. Sullivan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sullivan, T.P., Gao, Y. Assessment of nitrogen inputs and yields in the Cibolo and Dry Comal Creek watersheds using the SWAT model, Texas, USA 1996–2010. Environ Earth Sci 75, 725 (2016). https://doi.org/10.1007/s12665-016-5546-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5546-0

Keywords

Navigation