Skip to main content
Log in

Investigating the characteristics of mine water in a subsea mine using groundwater geochemistry and stable isotopes

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Investigation were conducted in the Xinli subsea mine from 2006 to 2011, which is the largest subsea mine in China and threatened by the overlying Quaternary aquifer and seawater. Hydrochemical and stable isotopic (δ2H and δ18O) analyses were used to study the relationships between various waters. Hydrochemical results indicated that the seepage water in the mine tunnels had higher EC, TDS, and concentrations of most elements than the seawater and saline groundwater. Water analyses indicated the mine discharge was a mixture of the seawater, brine, and atmospheric precipitation. The proportions of the three different sources were calculated based on hydrochemical and isotopic analyses. The seepage water were more isotopically enriched than the seawater but less than the brine. In addition, the isotope mixing calculation indicated that the average proportions of mine water from seawater, brine and atmospheric precipitation were about 38.5, 46, and 15.5 % respectively for the entire mine in 2006. However, the concentrations of these analyses decreased and the proportion of the seawater increased 21.1 % after 5 years of exploitation in 2011. These changes demonstrated that the surrounding rock mass underwent a certain extent of deformation and failure because of the mining disturbance, which enhanced the permeability of the surrounding rock mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aston TRC, Whittaker BN (1985) Undersea longwall mining subsidence with special reference to geological and water occurrence criteria in the North-East of England coalfield. Min Sci Technol 2(2):105–130. doi:10.1016/S0167-9031(85)90335-4

    Article  Google Scholar 

  • Bell FG, Stacey TR, Genske DD (2000) Mining subsidence and its effect on the environment: some differing examples. Environ Geol 40(1/2):135–152. doi:10.1007/s002540000140

    Article  Google Scholar 

  • Birkle P, Merkel B, Portugal E et al (2001) The origin of reservoir fluids in the geothermal field of Los Azufres, Mexico—isotopical and hydrological indications. Appl Geochem 16(14):1595–1610. doi:10.1016/S0883-2927(01)00031-2

    Article  Google Scholar 

  • Castilla JC, Nealler E (1978) Marine environmental impact due to mining activities of El Salvador copper mine, Chile. Mar Pollut Bull 9(3):67–70. doi:10.1016/0025-326X(78)90451-4

    Article  Google Scholar 

  • Chapman EC, Capo RC, Stewart BW et al (2013) Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau. Appl Geochem 31:109–118. doi:10.1016/j.apgeochem.2012.12.011

    Article  Google Scholar 

  • Craig H (1961) Isotope variations in meteoric waters. Science 133:1702–1703

    Article  Google Scholar 

  • Epstein S, Mayeda T (1953) Variation of O18 content of water from natural sources. Geochim Cosmochim Ac 4:213–224. doi:10.1016/0016-7037(53)90051-9

    Article  Google Scholar 

  • Gammons CH, Brown A, Poulson SR et al (2013) Using stable isotopes (S, O) of sulfate to track local contamination of the Madison karst aquifer, Montana, from abandoned coal mine drainage. Appl Geochem 31:228–238. doi:10.1016/j.apgeochem.2013.01.008

    Article  Google Scholar 

  • Garing C, Luquot L, Pezard PA et al (2013) Geochemical investigations of saltwater intrusion into the coastal carbonate aquifer of Mallorca, Spain. Appl Geochem 39:1–10. doi:10.1016/j.apgeochem.2013.09.011

    Article  Google Scholar 

  • Garritty P (1983) Water flow into undersea mine workings. Geotech Geol Eng 1(3):237–251

    Google Scholar 

  • Ghosh AK, Mukhopadhyay R (2000) Mineral wealth of the ocean. A.A. Balkema, Rotterdam

    Google Scholar 

  • Glasby GP (2000) Lessons learned from deep-sea mining. Science 289(5479):551–553. doi:10.1126/science.289.5479.551

    Article  Google Scholar 

  • Glasby GP (2002) Deep seabed mining: past failures and future prospects. Mar Georesour Geotec 20(2):161–176. doi:10.1080/03608860290051859

    Article  Google Scholar 

  • González-Partida E, Carrillo-Chávez A, Levresse G et al (2005) Hydro-geochemical and isotopic fluid evolution of the Los Azufres geothermal field, Central Mexico. Appl Geochem 20(1):23–39. doi:10.1016/j.apgeochem.2004.07.006

    Article  Google Scholar 

  • Halfar J, Fujita RM (2002) Precautionary management of deep-sea mining. Mar Policy 26(2):103–106. doi:10.1016/S0308-597X(01)00041-0

    Article  Google Scholar 

  • Han D, Kohfahl C, Song X et al (2011) Geochemical and isotopic evidence for palaeo-seawater intrusion into the south coast aquifer of Laizhou Bay, China. Appl Geochem 26(5):863–883. doi:10.1016/j.apgeochem.2011.02.007

    Article  Google Scholar 

  • Jewett SC, Feder HM, Blanchard A (1999) Assessment of the benthic environment following offshore placer gold mining in the northeastern Bering Sea. Mar Environ Res 48(2):91–122. doi:10.1016/S0141-1136(99)00034-3

    Article  Google Scholar 

  • Katherine WD, Eileen P (2009) Investigating hydraulic connections and the origin of water in a mine tunnel using stable isotopes and hydrographs. Appl Geochem 24(12):2266–2282. doi:10.1016/j.apgeochem.2009.09.015

    Article  Google Scholar 

  • Li X, Wang SJ, Liu TY et al (2004) Engineering geology, ground surface movement and fissures induced by underground mining in the Jinchuan Nickel Mine. Eng Geol 76(1–2):93–107. doi:10.1016/j.enggeo.2004.06.008

    Article  Google Scholar 

  • Li X, Li D, Liu Z et al (2013) Determination of the minimum thickness of crown pillar for safe exploitation of a subsea gold mine based on numerical modelling. In J Rock Mech Min Sci 57:42–56. doi:10.1016/j.ijrmms.2012.08.005

    Google Scholar 

  • Liu C, Peng B, Qin J (2007) Geological analysis and numerical modeling of mine discharges for the Sanshandao gold mine in Shandong, China: 1. Geological Analysis. Mine Water Environ 26(3):160–165. doi:10.1007/s10230-007-0004-6

    Article  Google Scholar 

  • Ma F, Yang YS, Yuan R et al (2007) Study of shallow groundwater quality evolution under saline intrusion with environmental isotopes and geochemistry. Environ Geol 51(6):1009–1017. doi:10.1007/s00254-006-0370-6

    Article  Google Scholar 

  • Mahmoud K, Corinne LGLS, Joël L et al (2013) Origin of groundwater salinity (current seawater vs. saline deep water) in a coastal karst aquifer based on Sr and Cl isotopes. Case study of the La Clape massif (southern France). Appl Geochem 37:212–227. doi:10.1016/j.apgeochem.2013.07.006

    Article  Google Scholar 

  • Migaszewski Z, Gałuszka A, Hałas S et al (2009) Chemical and isotopic variations in the Wiśniówka Mała mine pit water, Holy Cross Mountains (south-central Poland). Environ Geol 57(1):29–40. doi:10.1007/s00254-008-1279-z

    Article  Google Scholar 

  • Park HY, Jang K, Ju JW et al (2012) Hydrogeological characterization of seawater intrusion in tidally-forced coastal fractured bedrock aquifer. J Hydrol 446–447:77–89. doi:10.1016/j.jhydrol.2012.04.033

    Article  Google Scholar 

  • Parker SR, Gammons CH, Garrett Smith M et al (2012) Behavior of stable isotopes of dissolved oxygen, dissolved inorganic carbon and nitrate in groundwater at a former wood treatment facility containing hydrocarbon contamination. Appl Geochem 27(6):1101–1110. doi:10.1016/j.apgeochem.2012.02.035

    Article  Google Scholar 

  • Pellicori DA, Gammons CH, Poulson SR (2005) Geochemistry and stable isotope composition of the Berkeley pit lake and surrounding mine waters, Butte, Montana. Appl Geochem 20(11):2116–2137. doi:10.1016/j.apgeochem.2005.07.010

    Article  Google Scholar 

  • Piper AM (1944) A graphical procedure in the geochemical interpretation of water analysis. Trans Am Geophys Union 25:914–928

    Article  Google Scholar 

  • Qin H, Ma ZY (2005) Hydrogeochemistry. Geological Publishing House, Beijing, pp 133–135

    Google Scholar 

  • Révész K, Coplen TB (2007) Determination of the δ(2H/1H) of water: RSIL lab code 1574. In: Révész K, Coplen TB (eds) Methods of the Reston Stable Isotope Laboratory. US Geological Survey, Techniques and Methods, Techniques and Methods (Book 10, sec. C, Chapter 1), Reston

  • Révész K, Coplen TB (2008) Determination of the δ(18O/16O) of water: RSIL lab code 489. In: Révész K, Coplen TB (eds) Methods of the Reston Stable Isotope Laboratory. US Geological Survey, Techniques and Methods, Techniques and Methods, (Book 10, Sect. C, Chapter 2), Reston

  • Sui WH, Xu ZM (2013) Risk assessment for coal mining under sea area. In: Huang Y, Wu FQ, Shi ZM, Ye B (eds) New Frontiers in Engineering Geology and the Environment. Springer-Verlag, Berlin, pp 199–202. doi:10.1007/978-3-642-31671-5_35

  • Sun Z, Zhu Z, Li W (2002) Geological exploration report of Xinli gold mine. Laizhou Geological and Mineral Exploration Institute, Laizhou

    Google Scholar 

  • Swift GM, Reddish DJ (2002) Stability problems associated with an abandoned ironstone mine. B Eng Geol Environ 61:227–239. doi:10.1007/s10064-001-0147-9

    Article  Google Scholar 

  • Wang WX, Hu W, Liang YK (2013) Experimental investigation for water flowing fractured zone due to coal mining under sea area. In: Huang Y, Wu FQ, Shi ZM, Ye B (eds) New Frontiers in Engineering Geology and the Environment. Springer-Verlag, Berlin, pp 207–209. doi:10.1007/978-3-642-31671-5_37

  • Zhao HJ, Ma FS, Li GQ et al (2008) Analysis and mechanism of ground movement, deformation and fracture induced by underground backfill mining. Chin J Geotech Eng 30(5):670–676

    Google Scholar 

  • Zhao HJ, Ma FS, Zhang YM et al (2013) Monitoring and mechanisms of ground deformation and ground fissures induced by cut-and-fill mining in the Jinchuan Mine 2, China. Environ Earth Sci 68(7):1903–1911. doi:10.1007/s12665-012-1877-7

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the National Natural Science Foundation of China (Grant Nos. 41172271, 41372323, and 41372325). Grateful appreciation is expressed for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, F., Zhao, H. & Guo, J. Investigating the characteristics of mine water in a subsea mine using groundwater geochemistry and stable isotopes. Environ Earth Sci 74, 6703–6715 (2015). https://doi.org/10.1007/s12665-015-4680-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4680-4

Keywords

Navigation