Skip to main content
Log in

Integrated water resources management on a local scale: a challenge for the user community—a case study in Southern Spain

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Associated with the vision of balanced, sustainable resource management, the end of the 20th century witnessed the paradigm of Integrated Water Resources Management (IWRM), whose application was based on considering the river basin as an operating unit. The last decade has seen a preference for a scaled abstraction of this focus in which the administrative and physical limits of the resource that is provided can be considered as water management subunits, albeit ever dependent on and under the supervision of the river basin authority to which it belongs. This article shows the advantages of applying specific IWRM-based measures that can be implemented on a local scale. In the case under study (a municipality in south-eastern Spain) and based on the possibilities it offered, consideration has been given to joint management of the available water resources as feasible from the technical, economic, social and environmental points of view. The project compares two 20-year scenarios to reflect the consequences of incorporating the overexploited aquifer into the local water resources management scheme. Scenario 1 represents the existing non-joint water management, while Scenario 2 considers conjoint water management of surface and groundwater resources, examining variables related to climatic change and economic cycles. The simulations performed demonstrate that local scale management appears to be a feasible solution for semiarid towns and villages: it increases supply compared to current management and guarantees that demand is met for all the irrigation communities and indicates an almost immediate widespread recovery of the water table, even under scenarios with increased demand and a moderate fall in water resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andreu J, Capilla J, Sanchís E (1996) AQUATOOL, a generalized decision support system for water-resources planning and management. J Hydrol 177:269–291

    Article  Google Scholar 

  • Biswas AK (2004) Integrated Water Resources Management: a reassessment. A water forum contribution. Water Int 29(2):248–256

    Article  Google Scholar 

  • Biswas AK (2008) Integrated Water Resources Management: is it working? Int J Water Resour Dev 24(1):5–22

    Article  Google Scholar 

  • Capilla J, Andreu J (1996) AQUIVAL: a GUI for groundwater modelling incorporated into the simulation of complex water resources systems. In: Sixth International Conference on Hydraulic Engineering Software, 10–12 September, Penang Malaysia. Wessex Institute of Technology, Southampton, UK

  • European Parliament and Council (2000) Directive 2000/60/EC of the European Parliament and of the Council, of 23 October 2000, establishing a framework for Community action in the field of water policy. Official Journal of the European Commission, L 327/1, 22.12.2000

  • Ford CR, Fulkerson DR (1962) Flow in networks. Princeton University Press, Princeton

    Google Scholar 

  • Foster S, Ait-Kadi M (2012) Integrated Water Resources Management (IWRM): how does groundwater fit in? Hydrogeol J 20(3):415–418

    Article  Google Scholar 

  • Garduño H, Foster S, Nanni M, Kemper K, Tuinhof A, Koundouri P (2006). Groundwater dimensions of national water resource and river basin planning. GW-MATE Briefing Note Series 10, World Bank, Washington DC. http://www.un-igrac.org/dynamics/modules/SFIL0100/view.php?fil_Id=171. Accessed 9 Dec 2013

  • GWP (2000). Integrated Water Resources Management. GWP. TAC Back Groundpapers, 4 http://www.gwp.org/Global/GWP-CACENA_Files/en/pdf/tec04.pdf. Accessed 11 Mar 2014

  • Henche M, Murillo JM, Castaño S (2002) Optimización del uso de los recursos hídricos del sector Sierra de Baza (Granada, cuenca del Guadalquivir, España) mediante el empleo de un modelo matemático de simulación conjunta. Boletín Geológico y Minero 113(2):185–198

    Google Scholar 

  • ICLEI (2005). Local Government Implementation Guide for the Johannesburg Plan of Implementation and the Millennium Development Goals. Volume 1: Water, Sanitation and Human Settlements. http://www3.iclei.org/implementationguide. Accessed 15 May 2013

  • Iglesias A (2009) Policy issues related to climate change in Spain. In: Dinar A, Albiac A (eds) Policy and strategic behaviour in Water Resource Management. Earthscan, London

    Google Scholar 

  • IGME (2010) “Encomienda de gestión para la realización de trabajos científico-técnicos de apoyo a la sostenibilidad y protección de las aguas subterráneas. Actividad 3: Seguimiento y asistencia técnica en el proceso de planificación Hidrológica. Trabajos de Apoyo en la definición de la transferencia subterránea de la MASUB Boquerón con otras masas definidas en la demarcación hidrográfica del Júcar”, http://www.igme.es/INTERNET/SIDIMAGENES/153000/808/153808_0000001.PDF, Accessed 1 Feb 2014

  • IPCC (2007) Climate Change 2007: Fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jonch-Clausen T (2004) Integrated Water Resources Management (IWRM) and Water Efficiency Plan by 2005, Why, What and How? Global Water Partnership, Estocolmo. http://www.tnmckc.org/upload/document/bdp/2/2.7/GWP/TJC-0401.pdf. Accessed 13 Mar 2014

  • Leidel M, Niemann S, Hagemann N (2011) Capacity development as a key factor for integrated wáter resources management (IWRM): improving water management in the Western Bug River Basin, Ukraine. Environ Earth Sci 65(5):1415–1426. doi:10.1007/s12665-011-1223-5

    Article  Google Scholar 

  • Lloyd-Hughes B, Saunders MA (2002) Seasonal prediction of European spring precipitation from ENSO and local sea surface temperatures. Int J Climatol 22:1–14

    Article  Google Scholar 

  • Lopez-Gunn E, Zorrilla P, Prieto F, Llamas MR (2012) Lost in translation? Water efficiency in spanish agricultura. Agric Water Manage 108:83–95

    Article  Google Scholar 

  • Madramootoo CA (2012) Sustainable Groundwater use in agriculture. Irrig Drain 61(1):26–33. doi:10.1002/ird.1658

    Article  Google Scholar 

  • Mankad A (2012) Decentralised water systems: emotional influences on resource decision making. Environ Int 44:128–140

    Article  Google Scholar 

  • Martínez-Granados D, Maestre-Valero JF, Calatrava J, Martínez-Álvarez V (2011) The economic impact of water evaporation losses from water reservoirs in the Segura basin, SE Spain. Water Resour Manage 25:3153–3175

    Article  Google Scholar 

  • Moriarty P, Butterworth J, Batchelor C (2004) Integrated Water Resources Management and the domestic water and sanitation sub-sector. Delft, the Netherlands, IRC Thematic Overview Paper. http://www.wsscc.org/sites/default/files/publications/irc_iwrm_thematic_overview_paper_2004.pdf. Accessed 24 Mar 2014

  • Murillo JM, Navarro JA (2008) Empleo de modelos de análisis global de recursos hídricos como primera actuación a emprender en propuestas de gestión que contemplen operaciones de recarga artificial de acuíferos. Boletín Geológico y Minero 119(2):247–272

    Google Scholar 

  • Odendaal PE (2002) Integrated Resource Management (IWRM), with Special Reference to Sustainable Urban Water Management. Conference Johannesburg, Sudáfrica. 9 pp. http://www2.gtz.de/Dokumente/oe44/ecosan/en-integrated-water-resources-management-sustainable-urban-water-management-2002.pdf. Accessed 20 Mar 2014

  • Paredes J, Andreu J, Martín M, Solera A (2010) Water quantity and quality models applied to the Jucar River Basin, Spain. Water Resour Manag 24(11):2759–2779

    Article  Google Scholar 

  • Pulido-Velazquez D, Garrote L, Andreu J, Martin-Carrasco FJ, Iglesias A (2011) A methodology to diagnose the effect of climate change and to identify adaptive strategies to reduce its impacts in conjunctive-use systems at basin scale. J Hidrol 405:110–122

    Article  Google Scholar 

  • Richter S, Völker J, Borchardt D, Mohaupt V (2013) The water framework directive as an approach for integrated water resources management: results from the experiences in Germany on implementation, and future perspectives. Environ Earth Sci 69:719–728. doi:10.1007/s12665-013-2399-7

    Article  Google Scholar 

  • Sahuquillo A (1983) An eigenvalue numerical technique for solving -unsteady linear ground water models continuously in time. Water Resour Res 19:87–93

    Article  Google Scholar 

  • Samper J, Huguet L, Ares J, García MA (1999) Manual del usuario del programa Visual Balan v. 1.0: Código interactivo para la realización de balances hidrológicos y la estimación de la recarga. Publicación técnica de ENRESA 5(99), Madrid

  • Senent M, Linares L, Barba-Romero J (1975) El sistema hidrogeológico del Boquerón (Albacete); contribución a su estudio con un bombeo de ensayo de larga duración. Boletín Geológico y Minero 86(3):277–296

    Google Scholar 

  • Shiklomanov I (1998) World Water Resources: Modern Assessment and Outlook for 21st Century. Federal Service of Rusia for Hidrometorology & Environment Monitoring State, Hidrological Institute, San Petesburgo

    Google Scholar 

  • Singh A (2012) Doctoral Thesis “Optimization and simulation modelling for managing waterlogging in semi-arid region of Haryana, India”. Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur

    Google Scholar 

  • Smits S, Butterworth J (2006) Literature review: Local Government and Integrated Water Resources Management. Delft, the Netherlands, LoGo Water Project, Working Paper.http://logowater.icleieurope.org/fileadmin/user_upload/logowater/wp2/WP2_Report_draft2_14July05.pdf. Accessed 24 Jan 2014

  • Swatuk LA, Motsholapheko M (2008) Communicating integrated water resources management: from global discourse to local practice—chronicling an experience from the Boteti River sub-Basin, Botswana. Phys Chem Earth 33:881–888

    Article  Google Scholar 

  • UN (2000) World Population Prospects: 2010 Revision Population Database. http://www.un.org/spanish/milenio/ares552.pdf. Accessed 24 Sept 2013

  • Winter TC, Harvey JW, Franke OL, Alley WM (1998) Ground water and surface water. A single resource. US Geol Surv Circ 1139:79

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Pérez-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Sánchez, J., Senent-Aparicio, J. Integrated water resources management on a local scale: a challenge for the user community—a case study in Southern Spain. Environ Earth Sci 74, 6097–6109 (2015). https://doi.org/10.1007/s12665-015-4633-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4633-y

Keywords

Navigation