Skip to main content

Advertisement

Log in

Assessment of Egypt’s Red Sea coastal sensitivity to climate change

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

A coastal sensitivity index (CSI) was developed to assess the response of the Red Sea coast in Egypt to climate change in terms of sea level rise and global warming. Six different variables pertaining to the intrinsic characteristics of the coast that extends to 1200 km were utilized, notably: coastal geomorphology, coastal slope, width of the coastal plain, shoreline exposure, fauna/flora and land use. Data have been extracted, manipulated and presented using remote sensing and GIS analysis. The resulting coastal sensitivity map depicts the susceptibility levels of the Red Sea coastal plain to climate change. The most severely sensitive segments (very high CSI) account for 31 % (365 km) of the coast. They occur across unconsolidated, flat, wide, exposed, ecologically effective and/or inhabited coasts. On the other hand, the least sensitive (low CSI) coastal segments total 245 km (20 %) and are mainly rocky, steep, narrow, barren and/or inaccessible shores. Eustatic sea level rise by 1 m should inundate a coastal area of 106 km2, whereas a sudden tsunami of 5 m height should overwhelm 724 km2, particularly at the southern section near Shalateen. Global warming of seawater should impact the coastal zone between Hurghada and Marsa Alam (270 km long) due to the occurrence of fringing coral reef systems. The coastal sensitivity index provides a synoptic overview that could help prioritize emergency plans and protection strategies to reduce the ramifications of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Kader A, El-Raey M, Nasr M, El-Gamily H (1998) Environmental sensitivity analysis of potential oil spill for Ras Mohammed coastal zone, Egypt. J Coastal Res 14:502–510

    Google Scholar 

  • Abu Al-Izz M (1971) Landforms of Egypt. The American University in Cairo Press, p 281

  • Abuodha P, Woodroffe C (2010) Assessing vulnerability to sea-level rise using a coastal sensitivity index: a case study from southeast Australia. J Coast Conserv 14:189–205

    Article  Google Scholar 

  • Al-shalabi M, Billa L, Pradhan B, Mansor S, Al-Sharif AA (2013) Modelling urban growth evolution and land-use changes using GIS based cellular automata and SLEUTH models: the case of Sana’a metropolitan city, Yemen. Environ Earth Sci 70(1):425–437

    Article  Google Scholar 

  • Arnott RD (2010) Introduction to coastal processes and geomorphology. Cambridge University Press, NY, p 442

    Google Scholar 

  • Arnous M, Aboulela H, Green D (2011) Geo-environmental hazards assessment of the north western Gulf of Suez, Egypt. J Coast Conserv 15:37–50

    Article  Google Scholar 

  • Bathrellos GD, Papanastassiou KG, Skilodimou HD, Papanastassiou D, Chousianitis KG (2012) Potential suitability for urban planning and industry development using natural hazard maps and geological–geomorphological parameters. Environ Earth Sci 66:537–548

    Article  Google Scholar 

  • Bathrellos GD, Papanastassiou KG, Skilodimou HD, Skianis GA, Chousianitis KG (2013) Assessment of rural community and agricultural development using geomorphological–geological factors and GIS in the Trikala prefecture (Central Greece). Stoch Environ Res Risk Assess 27(2):573–588

    Article  Google Scholar 

  • Boruff BJ, Emrich C, Cutter SL (2005) Erosion hazard vulnerability of US coastal counties. J Coastal Res 21:932–943

    Article  Google Scholar 

  • Cantin NE, Cohen AL, Karnauskas KB, Tarrant AM, McCorkle DC (2010) Ocean warming slows coral growth in the central Red Sea. Science 329(5989):322–325

    Article  Google Scholar 

  • Caragnano A, Colombo F, Rodondi G, Basso D (2009) 3-D distribution of nongeniculate corallinales: a case study from a reef crest of South Sinai (Red Sea, Egypt). Coral Reefs 28(4):881–891

    Article  Google Scholar 

  • Chaaban F, Darwishe H, Louche B, Queney YB, Masson E, El Khattabi J, Carlier E (2012) Geographical information system approach for environmental management in coastal area (Hardelot-Plage, France). Environ Earth Sci 65:183–193

    Article  Google Scholar 

  • Churchill J, Lentz S, Farrar J, Abualnaja Y (2014) Properties of Red Sea coastal currents. Continental Shelf Res 78:51–61

    Article  Google Scholar 

  • Coles SL, Brown BE (2003) Coral bleaching: capacity for acclimatization and adaptation. Adv Mar Biol 46:183–223

    Article  Google Scholar 

  • Collingham YC, Huntley B (2000) Impacts of habitat fragmentation and patch size upon migration rates. Ecol Appl 10:131–144

    Article  Google Scholar 

  • Davis R (1996) Coasts. Prentice Hall, Upper Saddle

    Google Scholar 

  • Doukakis E (2005) Coastal vulnerability and risk parameters. European Water 11(12):3–7

    Google Scholar 

  • Duriyapong F, Nakhapakorn K (2011) Coastal vulnerability assessment: a case study of Samut Sakhon coastal zone. Songklanakarin J Sci Technol 33:469–476

    Google Scholar 

  • El Moursi M, Hoang C, El Fayoumy I, Hegab O, Faure H (1994) Pleistocene evolution of the Red Sea coastal plain, Egypt: evidence from uranium-series dating of emerged reef terraces. Quat Sci Rev 13:345–359

    Article  Google Scholar 

  • Finkl C (2004) Coastal classification: systematic approaches to consider in the development of a comprehensive scheme. J Coast Res 20:166–213

    Article  Google Scholar 

  • Finkl C, Pelinovsky E, Cathcar R (2012) A review of potential tsunami impacts to the Suez Canal. J Coast Res 28:745–759

    Article  Google Scholar 

  • Frihy O, El Ganaini M, El Sayed W, Iskander M (2004) The role of fringing coral reef in beach protection of Hurghada, Gulf of Suez, Red Sea of Egypt. Ecol Eng 22:17–25

    Article  Google Scholar 

  • Frihy O, Hassan A, El Sayed W, Iskandera M, Sherif M (2006) A review of methods for constructing coastal recreational facilities in Egypt (Red Sea). Ecol Eng 27:1–12

    Article  Google Scholar 

  • Hammar-Klose ES, Pendleton EA, Thieler ER, Williams SJ (2003) Coastal vulnerability assessment of Cape Cod national seashore (CACO) to sea-level rise, US Geological Survey, Open file Report 02–233

  • Hereher M (2010) Vulnerability of the Nile Delta to sea level rise: an assessment using remote sensing. Geomat Nat Hazards Risk 1:315–321

    Article  Google Scholar 

  • Hereher M (2014) Assessment of South Sinai Coastal vulnerability to climate change. J Coast Res. doi:10.2112/JCOASTRES-D-14-00018.1

    Google Scholar 

  • Hereher M (2015) Coastal vulnerability assessment for Egypt’s Mediterranean coast. Geomat Nat Hazards Risk 6(4):342–355

    Article  Google Scholar 

  • Hereher M, El-Ezaby K (2012) Soil and water quality assessment along the Red Sea coast, Egypt. Int J Environ Stud 69(1):65–77

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Hoegh Grosberg R, Guldberg O, Jackson JC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2001) Climate change 2001. The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. In: Houghton JT, Ding Y, Griggs DJ, Noguer, M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Cambridge University Press, Cambridge, New York, p 881

  • Johnston A, Slovinsky P, Yates K (2014) Assessing the vulnerability of coastal infrastructure to sea level rise using multi-criteria analysis in Scarborough, Maine (USA). Ocean Coast Manag 95:176–188

    Article  Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso JP, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284(5411):118–120

    Article  Google Scholar 

  • Kumar TS, Mahendra RS, Nayak S, Radhakrishnan K, Sahu KC (2010) Coastal vulnerability assessment for Orissa State, East Coast of India. J Coast Res 26(3):523–534

    Article  Google Scholar 

  • Kunte PD, Jauhari N, Mehrotra U, Kotha M, Hursthouse AS, Gagnon AS (2014) Multi-hazards coastal vulnerability assessment of Goa, India using geospatial techniques. Ocean Coast Manag 95:264–281

    Article  Google Scholar 

  • McWilliams JP, Cote IM, Gill JA, Sutherland WJ, Watkinson A (2005) Accelerating impacts of temperature-induced coral bleaching in the Caribbean. Ecol 86(8):2055–2060

    Article  Google Scholar 

  • Meehl GA, Washington WM, Collins WD, Arblaster JM, Hu A, Buja LE, Strand WG, Ten H (2005) How much more global warming and sea level rise. Science 307:1769–1772

    Article  Google Scholar 

  • Nicholls RJ (2002) Analysis of global impacts of sea-level rise: a case study of flooding. Phys Chem Earth 27(32–34):1455–1466

    Article  Google Scholar 

  • Ozyurt G, Ergin A (2010) Improving coastal vulnerability assessments to sea-level rise: a new indicator-based methodologyfor decision makers. J Coast Res 26(2):265–273

    Article  Google Scholar 

  • Papadopoulou-Vrynioti K, Bathrellos GD, Skilodimou HD, Kaviris G, Makropoulos K (2013) Karst collapse susceptibility mapping considering peak ground acceleration in a rapidly growing urban area. Eng Geol 158:77–88

    Article  Google Scholar 

  • Pendleton EA, Thieler ER and Williams SJ (2004) Coastal vulnerability assessment of Cap Hettaras national seashore (CAHA) to sea level rise. US Geological Survey Open-File Report 2004–1064

  • Pendleton EA, Thieler ER and Williams SJ (2005) Coastal vulnerability assessment of Golden Gate national recreation area to sea-level rise. US Geological Survey Open-File Report 2005–1058, p 27

  • Plaziat J, Baltzer F, Choukri A, Conchon O, Freytet F (1995) Quaternary changes in the Egyptian shoreline of the northwestern Red Sea and Gulf of Suez. Quat Int 29(30):11–22

    Article  Google Scholar 

  • Rao KN, Subraelu P, Rao T, Malini B, Ratheesh R, Bhatta-charya S, Rajawat A (2008) Sea-level rise and coastal vulnerability: an assessment of Andhra Pradesh coast, India through remote sensing and GIS. J Coast Conserv 12(4):195–207

    Article  Google Scholar 

  • Reefbase (2013) Reefbase—a global information system for coral reefs. http://www.reefbase.org

  • Saad A (2010) Wave and wind conditions in the Red Sea—a numerical study using a third generation wave model. M.Sc. Thesis in Physical Oceanography. Geophysical Institute, University of Bergen, Norway, p 88

  • Said R (1962) The geology of Egypt. Elsevier, New York, p 377

    Google Scholar 

  • Salem S (2009) Paleo-tsunami deposits on the Red Sea beach, Egypt. Arab J Geosci 2:185–197

    Article  Google Scholar 

  • Skilodimou HD, Stefouli M, Bathrellos GD (2002) Spatio-temporal analysis of the coastline of Faliro Bay, Attica, Greece. Estud Geol Madrid 58(3–4):83–89

    Google Scholar 

  • Small C, Nicholls RJ (2003) A global analysis of human settlement in coastal zones. J Coast Res 19(3):584–599

    Google Scholar 

  • Thieler ER, Hammar-Klose ES (1999) National assessment of coastal vulnerability to sea-level rise: preliminary results for the US Atlantic Coast US Geological Survey, Open-File Report 99–593, 1 sheet

  • Uddameri V, Singaraju S, Hernandez EA (2014) Impacts of sea-level rise and urbanization on groundwater availability and sustainability of coastal communities in semi-arid South Texas. Environ Earth Sci 71(6):2503–2515

    Article  Google Scholar 

  • Williams S (2013) Sea-level rise implications for coastal regions. J Coastal Res 63:184–196

    Article  Google Scholar 

  • Wolfenden E, Ebinger C, Yirgu G, Deino A, Ayele D (2004) Evolution of the northern main Ethiopian Rift: birth of a triple junction. Earth Planet Sci Lett 224:213–228

    Article  Google Scholar 

  • Youssef AM, Maerz NH (2013) Overview of some geological hazards in the Saudi Arabia. Environ Earth Sci 70(7):3115–3130

    Article  Google Scholar 

  • Zahran M, Willis A (2009) The vegetation of Egypt. Springer Science Bus Media, Berlin, p 437

    Google Scholar 

Download references

Acknowledgments

The author deeply acknowledges and thanks the reviewer(s) of the MS for the valuable comments and revisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed E. Hereher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hereher, M.E. Assessment of Egypt’s Red Sea coastal sensitivity to climate change. Environ Earth Sci 74, 2831–2843 (2015). https://doi.org/10.1007/s12665-015-4304-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4304-z

Keywords

Navigation