Skip to main content
Log in

Groundwater seepage as a driver of CO2 evasion in a coastal lake (Lake Ainsworth, NSW, Australia)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In recent years, it has become apparent that carbon dioxide (CO2) emissions from inland water bodies and lakes are an important component of the global carbon cycle. Large-scale lake heterotrophy is thought to be a major driver of CO2 production and may mask other processes such as groundwater input. This study uses radon (222Rn, a natural groundwater tracer) to quantify groundwater discharge, and estimates CO2 outgassing to determine the contribution of groundwater-derived CO2 inputs into Lake Ainsworth (New South Wales, Australia). Lake Ainsworth was a source of CO2 to the atmosphere throughout the study period with outgassing rates ranging from 10.6 to 152.3 mmol m2 day−1. Annual groundwater fluxes were determined using a radon mass balance equated to about 55 ± 50 % of the total volume of water input (via direct precipitation and groundwater) into the lake. In spite of large uncertainties, groundwater seepage was a source of CO2 supersaturation in Lake Ainsworth equivalent to 13 ± 25 % of total CO2 outgassing rates. Hence, groundwater discharge may need to be considered for carbon budgets of other lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Atkins M, Santos I, Ruiz-Halpern S, Maher D (2013) Carbon dioxide dynamics driven by groundwater discharge in a coastal floodplain creek. J Hydrol 493:30–42. doi:10.1016/j.hydrol.2013.04.008

    Article  Google Scholar 

  • Australian Bureau of Meterology (BOM) (2014) Ballina, New South Wales, 2014 Daily weather observation from Ballina Airport. Australian Government, Bureau of Meterology. Retrieved 9 May 2014. http://www.bom.gov.au/climate/dwo/201402/html/IDCJDW2006.201402.shtml

  • Balmer MB, Downing JA (2011) Carbon dioxide concentrations in eutrophic lakes: undersaturation: undersaturation implies atmospheric uptake. Inland Waters 1(2):125–132. doi:10.5268/IW-1.2.366

    Article  Google Scholar 

  • Borges AV, Abril G (2011) 5.04-Carbon dioxide and methane dynamics in Estuaries. In: Eric W, Donald M (eds) Treatise on Estuarine and Coastal Science. Academic Press, Amsterdam, pp 119–161

  • Burnett WC, Peterson RN, Santos IR, Hicks RW (2010) Use of automated radon measurements for rapid assessment of groundwater flow into Florida streams. J Hydrol 380(3):298–304. doi:10.1016/j.jhydrol.2009.11.005

    Article  Google Scholar 

  • Call M, Maher DT, Santos IR, Ruiz-Halpern S, Mangion P, Sanders CJ, Erler DV, Eyre BD (2015) Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring-neap-spring timescales in a mangrove creek. Geochim Cosmochim Acta 150:211–225. doi:10.1016/j.gca.2014.11.023

    Article  Google Scholar 

  • Cole JJ, Caraco NF, Kling GW, Kratz TK (1994) Carbon dioxide supersaturation in the surface waters of lakes. Science 265(5178):1568–1570. doi:10.1126/science.265.5178.1568

    Article  Google Scholar 

  • Cole JJ, Prairie YT, Caracao NF, McDowell WH, Travnik LJ, Striegl RG, Melack J (2007) Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 10(1):172–185

    Article  Google Scholar 

  • Corbett DR, Dillon K, Burnett W, Chanton J (2000) Estimating the groundwater contribution into Florida Bay via natural tracers, 222Rn and CH4. Limnol Oceanogr 45(7):1546–1557. doi:10.4319/lo.2000.45

    Article  Google Scholar 

  • Dimova NT, Burnett WC (2011) Evaluation of groundwater discharge into small lakes based on the temporal distribution of radon-222. Limnol Oceanogr 56(2):486–494. doi:10.4319/lo.2011.56.2.0486

    Article  Google Scholar 

  • Dimova NT, Burnett WC, Chanton JP, Corbett JE (2013) Application of radon-222 to investigate groundwater discharge into small shallow lakes. J Hydrol 486:112–122. doi:10.1016/j.jhydrol.2013.01.043

    Article  Google Scholar 

  • Duarte CM, Prairie Y (2005) Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems 8(7):862–870. doi:10.1007/s10021-005-0177-4

    Article  Google Scholar 

  • Dulaiova H, Peterson R, Burnett W, Lane-Smith D (2005) A multi-detector continuous monitor for assessment of 222Rn in the coastal ocean. J Radioanal Nucl Chem 263:361–365. doi:10.1007/s10967-005-0063-8

    Article  Google Scholar 

  • Gatland JR, Santos IR, Maher DT, Duncan TM, Erler DV (2014) Carbon dioxide and methane emissions from an artificially drained coastal wetland during a flood: implications for wetland global warming potential. J Geophys Res-Biogeosci 19(8):1698–1716. doi:10.1002/2013JG002544

    Article  Google Scholar 

  • Halbedel S, Koschorreck M (2013) Regulation of CO2 emission from temperate streams and reservoirs. Biogeosciences 10:7539–7551. doi:10.5194/bg-10-7539-2013

    Article  Google Scholar 

  • Kluge T, Ilmberger J, Von Rohden C, Aeschbach-Hertig W (2007) Tracing and quantifying groundwater inflow into lakes using radon-222. Hydrol Earth Syst Sci 11(5):1621–1631. doi:10.5194/hess-11-1621-2007

    Article  Google Scholar 

  • Lazzarino JK, Bachmann RW, Hoyer MV, Canfield DE Jr (2009) Carbon dioxide supersaturation in Florida lakes. Hydrobiologia 627(1):169–180. doi:10.1007/s10750-009-9723-y

    Article  Google Scholar 

  • Lee JM, Kim G (2006) A simple and rapid method for analysing radon in coastal and groundwater using a radon-air monitor. J Environ Radioact 89:219–228. doi:10.5355/JAST.2011.A115

    Article  Google Scholar 

  • Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. Oak Ridge, Tennessee: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy

  • Linnaluoma J (2012). Factors controlling carbon gas fluxes in boreal lakes. Department of Environmental Sciences, (PhD thesis) Lahti, Helsinki: Unigrafia

  • Macklin PA, Maher DT, Santos IR (2014) Estuarine canal estate waters: hotspots of CO2 outgassing driven by enhanced groundwater discharge? Mar Chem 167:87–92. doi:10.1016/j.marchem.2014.08.002

    Article  Google Scholar 

  • Maher D, Eyre BD (2010) Benthic fluxes of dissolved organic carbon in three temperate Australian estuaries: Implications for global estimates of benthic DOC fluxes. J Geophy Res Biogeosci. doi:10.1029/2010JG001433

    Google Scholar 

  • Maher DT, Eyre BD (2012) Carbon budgets for three autotrophic Australian estuaries: implication for global estimates of the coastal air-water CO2 flux. Global Biogeochem Cycles. doi:10.1029/2011GB004075

    Google Scholar 

  • Maher DT, Santos IR, Golsby-Smith L, Gleeson J, Eyre BD (2013a) Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: the missing mangrove carbon sink? Limnol Oceanogr 58(2):475–488. doi:10.4319/lo.2013.58.2.0475

    Google Scholar 

  • Maher DT, Santos IR, Golsby-Smith L, Gleeson J, Eyre BD (2013b) Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: the missing mangrove carbon sink? Limnol Oceanogr 58(2):475–488

    Google Scholar 

  • Maher DT, Cowley K, Santos IR, Macklin PA, Eyre BD (2015) Methane and carbon dioxide dynamics in a subtropical estuary over a diel cycle: insights from automated in situ radioactive and stable isotope measurements. Mar Chem 168:69–79. doi:10.1016/j.marchem.2014.10.017

    Article  Google Scholar 

  • Marotta H, Duarte CM, Pinho L, Enrich-Prast A (2010) Rainfall leads to increased pCO 2 in Brazilian coastal lakes. Biogeosciences 7(5):1–9. doi:10.5194/bg-7-1607-2010

    Article  Google Scholar 

  • Mitra S, Wassman R, Vlek PLG (2005) An appraisal of global wetland area and its organic carbon stock. Curr Sci 88(1):25–35. doi:10.1007/s12237-013-9626-z

    Google Scholar 

  • Pace ML, Prairie YT (2005) Respiration in aquatic ecosystem: respiration in lakes, Chap 7. Oxford University Press, UK, pp 103–121

  • Peterson RN, Burnett WC, Dimova NT, Santos IR (2009) Comparison of measurement methods for radium-226 on manganese fiber. Limnol Oceanogr Methods 7(196–205):1043. doi:10.4319/lom.2009.7.196

    Google Scholar 

  • Peterson RN, Santos IR, Burnett WC (2010) Evaluating groundwater discharge to tidal rivers based on a Rn-222 time-series approach. Estuar Coast Shelf Sci 86(2):165–178

    Article  Google Scholar 

  • Pierrot D, Neill C, Sullivan K, Castle R, Wanninkhof R, Luger H, Cosca CE (2009) Recommendations for autonomous under way pCO2 measuring systems and data-reduction routines. Deep-Sea Res II 56:512–522. doi:10.1016/j.dsr2.2008.12.005

    Article  Google Scholar 

  • Rautio A, Korkka-Niemi K (2011) Characterization of groundwater-lake water interactions at Phyhajarvi, a lake in SW Finland. Boreal Environ Res 16(5):363–380. doi:10.1108/14777831211204958

    Google Scholar 

  • Regnier P, Friedlingstein P, Ciais P, Mackenzie FT, Gruber N, Janssens IA, Thullner M (2013) Antropogenic perturbation of carbon fluxes from land to ocean. Nat Geosci 6(8):597–607. doi:10.1038/ngeo1830

    Article  Google Scholar 

  • Sacks LA, Swancar A, Lee TM (1998) Estimating ground-water exchange with lakes using water-budget and chemical mass-balance approaches for ten lakes in ridge areas of polk and highlands counties, Florida. Report 98-4133. Southwest Florida Water Management District, US Geological Survey

  • Santos IR, Eyre BD (2011) Radon tracing of groundwater discharge into an Australian estuary surrounded by coastal acid sulphate soils. J Hydrol 396(3):246–257. doi:10.1016/j.jhydrol.2010.11.013

    Article  Google Scholar 

  • Santos IR, Niencheski F, Burnett WC, Peterson RN, Chanton JP, Andrade CF, Knoeller K (2008) Tracing anthropogenically driven groundwater discharge into a coastal lagoon from southern Brazil. J Hydrol 353(3):275–293. doi:10.1016/j.jhydrol.2008.02.010

    Article  Google Scholar 

  • Santos IR, Burnett WC, Dittmar T, Suryaputra IGNA, Chanton J (2009) Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary. Geochim Cosmochim Acta 73(5):1325–1339. doi:10.1016/j.gca.2008.11.029

    Article  Google Scholar 

  • Santos IR, Maher DT, Eyre BD (2012a) Coupling automated radon and carbon dioxide measurements in coastal waters. Environ Sci Technol 46(14):7685–7691. doi:10.1021/es301961b

    Article  Google Scholar 

  • Santos IR, Perran LMC, Rogers L, Weys J, Eyre BD (2012b) The “salt wedge pump”: convection-driven pore-water exchange as a source of dissolved organic and inorganic carbon and nitrogen to an estuary. Limnol Oceanogr 57(5):1415–1426. doi:10.4319/lo.2012.57.5.1415

    Article  Google Scholar 

  • Schmidt A, Schubert M (2007) Using radon-222 for tracing groundwater discharge into an open-pit lignite mining lake—a case study. Isot Environ Health Stud 43(4):387–400. doi:10.1080/10256010701705419

    Article  Google Scholar 

  • Schmidt A, Stringer CE, Haferkorn U, Schubert M (2008) Quantification of groundwater discharge into lakes using radon-222 as naturally occurring tracer. Environ Geol. doi:10.1007/s00254-00008-01186-00253

    Google Scholar 

  • Schmidt A, Gibson JJ, Santos IR, Schubert M, Tattrie K (2010) The contribution of groundwater discharge to the overall water budget of two typical Boreal lakes in Alberta/Canada estimated from a radon mass balance. Hydrol Earth Syst Sci 14:79–89. doi:10.5194/hess-14-79-2010

    Article  Google Scholar 

  • Schubert M, Paschke A, Lieberman E, Burnett WC (2012) Air–water partitioning of 222Rn and its dependence on water temperature and salinity. Environ Sci Technol 46:3905–3911. doi:10.1021/es204680

    Article  Google Scholar 

  • Senden D, Howels L, Anderson P (1996) Australian water and coastal Studies Pty Ltd. (1996). The ecology lab Pty Ltd and Coastal and Marine Geosciences. Lake Processes Study. Prepared by: Ballina Shire Council

  • Shaw GD, White ES, Gammons ChH (2013) Characterizing groundwater-lake interactions and its impact on lake water quality. J Hydrol 492:69–78. doi:10.1016/j.jhydrol.2013.04.018

    Article  Google Scholar 

  • Stringer CE, Burnett W (2004) Sample bottle design improvements for radon emanation analysis of natural waters. Health Phys 87(6):642–646

    Google Scholar 

  • Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Weyhenmeyer GA (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54(6, part 2):2298–2314. doi:10.4319/lo.2009.54.6_part_2.2298

    Article  Google Scholar 

  • Twigg CH (1996) A nutrient budget for a coastal dune lake in north-eastern NSW, Australia. (Unpublished Honours thesis). Southern Cross University, School of Environmental Science and Engineering. Lismore, NSW

  • Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97(C5):7373–7382. doi:10.1029/92JC00188

    Article  Google Scholar 

  • Weiss R (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2(3):203–215. doi:10.1016/0304-4203(74)90015-2

    Article  Google Scholar 

  • Willyweather (Weather, Wind, Tides and Rain Radar Services Pty Ltd) (2014). Retrieved May 9, 2014, from http://www.willyweather.com.au/

  • Xing Y, Xie P, Yang H, Ni L, Wang Y, Rong K (2005) Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropical Lake in China. Atmos Environ 39:5532–5540. doi:10.1016/j.atmosenv.2005.06.010

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by the Australian Research Council (DP120101645, DE150100581 and LE120100156). We thank Fiona Cambell, Mitchell Call, Paul Macklin, Ben Stewart, Arquimedes Key Bernat Plewe, Quinn de Rosa Pontello, Arun Looman and Chiara O’Reilly for their assistance during the fieldwork, and we also would like to acknowledge Graham Plumb from the Ballina Shire Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita K. Perkins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perkins, A.K., Santos, I.R., Sadat-Noori, M. et al. Groundwater seepage as a driver of CO2 evasion in a coastal lake (Lake Ainsworth, NSW, Australia). Environ Earth Sci 74, 779–792 (2015). https://doi.org/10.1007/s12665-015-4082-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4082-7

Keywords

Navigation