Skip to main content

Advertisement

Log in

The relationships between El Niño Southern Oscillation and extreme storm events in Korea

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The characteristics of extreme storm events and their relationships with the El Niño Southern Oscillation (ENSO) in Korea were analyzed using rainfall. Timely rainfall series collected for over 230 years using a traditional Korean rain gauge (i.e., Chukwooki) since 1776 were employed. Even if the storm events and ENSO were difficult to compare comprehensively, return periods were identified as useful ways to explain the severity of independent storm events via a comprehensive index. Comparisons between the return periods of storm events and ENSO revealed that the annual maximum storm events in Korea were not greatly affected by ENSO. These patterns might be explained by the hypothesis that average storm events are more highly affected by domestic climate than global climate (ENSO). However, as the return period of a storm event grew, the probability of it being related to El Niño increased significantly due to combination effects of domestic and global climate factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allan R, Lindesay J, Parker D (1996) El Nino: Southern oscillation and climatic variability. CSIRO, pp 334–310

  • Ashok K, Yamagata T (2009) Climate change: the El Niño with a difference. Nature 461:481–484

    Article  Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res: Oceans 112:C11007. doi:10.1029/2006JC003798

    Article  Google Scholar 

  • Brunetti M, Buffoni L, Mangianti F, Maugeri M, Nanni T (2004) Temperature, precipitation and extreme events during the last century in Italy. Glob Planet Chang 40:141–149

    Article  Google Scholar 

  • Choi G, Collins D, Ren G, Trewin B, Baldi M, Fukuda Y, Afzaal M, Pianmana T, Gomboluudev P, Huong PT, Lias N, Kwon WT, Boo KO, Cha YM, Zhou Y (2009) Changes in means and extreme events of temperature and precipitation in the Asia-Pacific network region, 1955–2007. Int J Climatol 29:1906–1925

    Article  Google Scholar 

  • Chu H, Kim T, Lee J, Lee J (2007) Seasonal relationship between El Nino-Southern Oscillation and hydrologic variables in Korea. J Korea Water Resour Assoc 40:299–311

    Article  Google Scholar 

  • D’Arrigo R, Cook ER, Wilson RJ, Allan R, Mann ME (2005) On the variability of ENSO over the past six centuries. Geophys Res Lett 32:L03711. doi:10.1029/2004GL022055

    Google Scholar 

  • Diaz HF, Markgraf V (2000) El Niño and the Southern Oscillation: multiscale variability and global and regional impacts. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Elsey L (2004) ENSO defined Weatherwise January/February 2004 11–12

  • Evans MN, Kaplan A, Cane MA (2002) Pacific sea surface temperature field reconstruction from coral δ18O data using reduced space objective analysis. Paleoceanography 17:7-1–7-13. doi:10.1029/2000PA000590

    Article  Google Scholar 

  • Fréchet M (1951) Sur les tableaux de correlation dont les marges sont donnees. Ann Univ Lyon Sci Sect A 14:53–77

    Google Scholar 

  • Freund JE (1961) A bivariate extension of the exponential distribution. J Am Stat Assoc 56:971–977. doi:10.1080/01621459.1961.10482138

    Article  Google Scholar 

  • Gergis JL (2006) Evidence from tree-ring, coral, ice and documentary palaeoarchives, AD 1525–2002. University of New South Wales, Sydney

    Google Scholar 

  • Gergis JL, Fowler AM (2005) Classification of synchronous oceanic and atmospheric El Niño-Southern Oscillation (ENSO) events for palaeoclimate reconstruction. Int J Climatol 25:1541–1565. doi:10.1002/joc.1202

    Article  Google Scholar 

  • Gumbel EJ (1960) Bivariate exponential distributions. J Am Stat Assoc 55:698–707. doi:10.1080/01621459.1960.10483368

    Article  Google Scholar 

  • Gumbel EJ (1965) Two systems of bivariate extremal distributions, 35th session of the International Statistical Institutem Beograd, pp 69

  • Hanley DE, Bourassa MA, O’Brien JJ, Smith SR, Spade ER (2003) A quantitative evaluation of ENSO indices. J Clim 16:1249–1258. doi:10.1175/1520-0442(2003)16<1249:AQEOEI>2.0.CO;2

    Article  Google Scholar 

  • Jung H-S (1999) Interpretation of the transient variations in the time series of precipitation amounts in Seoul. Doctoral Dissertation, Seoul National University

  • Jung H-S, Lim G-H (1994) On the monthly precipitation amounts and number of precipitation days in Seoul, 1770–1907. Asia-Pac J Atmos Sci 30(4):487–505

    Google Scholar 

  • Jung H-S, Lim G-H, Oh J-H (2001) Interpretation of the transient variations in the time series of precipitation amounts in Seoul, Korea: part I. Diurnal variation. J Clim 14:2989–3004. doi:10.1175/1520-0442(2001)014<2989:IOTTVI>2.0.CO;2

    Article  Google Scholar 

  • Kawamura R (1998) A possible mechanism of the Asian summer monsoon-ENSO coupling. J Meteorol Soc Jpn 76(6):1009–1027

    Google Scholar 

  • Kim H, Ahn J, Yoon Y, Park M (1999) Investigation of nonlinearities for El Niño/Southern Oscillation index. J Korean Soc Civ Eng 19:149–157

    Google Scholar 

  • Kim KY, Roh JW, Lee DK, Jhun JG (2010) Physical mechanisms of the seasonal, subseasonal, and high-frequency variability in the seasonal cycle of summer precipitation in Korea. J Geophys Res 115:D14110. doi:10.1029/2009JD013561

    Article  Google Scholar 

  • Korea Institute of Construction Technology (2002) 2002 Flood in Gangwondo region by Typhoon Rusa. Korea Institute of Construction Technology, Goyang

    Google Scholar 

  • Kotz S, Balakrishnan N, Johnson NL (2000) Continuous multivariate distributions. Volume 1: models and applications. Wiley, New York, pp 350–362

  • Lee D (1998) Relationships of El Ni o and La Ni a with both temperature and precipitation in South Korea. J Korea Water Resour Assoc 31:807–819

    Google Scholar 

  • Lim G-H, Jung H-S (1992) Interannual variation of the annual precipitations at Seoul, 1771–1990. J. Korean Meteorol Soc 28:487–505

    Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787

    Article  Google Scholar 

  • McPhaden MJ (2004) Evolution of the 2002/03 El Niño. Bull Am Meteorol Soc 85:677–695. doi:10.1175/BAMS-85-5-677

    Article  Google Scholar 

  • Ministry of Construction and Transportation (2006) Investigation report on the damages by the Typhoon and intensive rainfall on July 2006. GOVP1200713914, Ministry of Land, Transport and Maritime Affairs, Seoul, Korea

  • National Emergency Management Agency (2009) Research on flood mitigation from inland inundation. National Emergency Management Agency, Seoul

    Google Scholar 

  • National Institute for Disaster Prevention (2002) The field survey report of damages caused by the Typhoon RUSA in 2002. National Institute for Disaster Prevention, Seoul

    Google Scholar 

  • Piccarreta M, Pasini A, Capolongo D, Lazzari M (2013) Changes in daily precipitation extremes in the Mediterranean from 1951 to 2010: the Basilicata region, southern Italy. Int J Climatol 33:3229–3248

    Article  Google Scholar 

  • Piccarreta M, Lazzari M, Pasini A (2014) Trends in daily temperature extremes over the Basilicata region (southern Italy) from 1951 to 2010 in a Mediterranean climatic context. Int J Climatol. doi:10.1002/joc.4101

    Google Scholar 

  • Rasmusson EM, Carpenter TH (1983) The relationship between eastern equatorial Pacific sea surface temperatures and rainfall over India and Sri Lanka. Mon Weather Rev 111:517–528. doi:10.1175/1520-0493(1983)111<0517:TRBEEP>2.0.CO;2

    Article  Google Scholar 

  • Ronghui H, Yifang W (1989) The influence of ENSO on the summer climate change in China and its mechanism. Adv Atmos Sci 8(1):21–32

    Article  Google Scholar 

  • Ronghui H, Wen C, Bangliang Y, Renhe Z (2004) Recent advances in studies of the interaction between the East Asian winter and summer monsoons and ENSO cycle. Adv Atmos Sci 21(3):407–424

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1989) Precipitation patterns associated with the high index phase of the Southern Oscillation. J Clim 2:268–284. doi:10.1175/1520-0442(1989)002<0268:PPAWTH>2.0.CO;2

    Article  Google Scholar 

  • Stahle DW et al (1998) Experimental dendroclimatic reconstruction of the Southern Oscillation. Bull Am Meteorol Soc 79:2137–2152. doi:10.1175/1520-0477(1998)079<2137:EDROTS>2.0.CO;2

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Nino. Bull Am Meteorol Soc 78:2771–2777

    Article  Google Scholar 

  • Wang B, Chan JCL (2002) How strong ENSO events affect tropical storm activity over the western North Pacific. J Clim 15:1643–1658

    Article  Google Scholar 

  • Wang S-W, Zhao Z-C (1981) Droughts and floods in China, 1470–1979. In: Wigley TML, Ingram MJ, Farmer G (eds) Climate and history: studies in past climates and their impact on man. University Press, Cambridge, pp 271–288

  • Yoo C (2006) Long-term analysis of wet and dry years in Seoul, Korea. J Hydrol 318(1–4):24–36

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minha Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, M., Choi, M. The relationships between El Niño Southern Oscillation and extreme storm events in Korea. Environ Earth Sci 74, 351–362 (2015). https://doi.org/10.1007/s12665-015-4040-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4040-4

Keywords

Navigation