Skip to main content
Log in

Experimental study of the crystallization of sodium sulfate hydrates through temperature monitoring

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Sodium sulfates are well known to be the most damaging salts in building materials and rocks. Unfortunately, the crystallization processes of sodium sulfates are not completely understood. In addition, the metastable heptahydrate has long been neglected in scientific works on salt damage until recently. In this study, we use temperature monitoring and differential scanning calorimetry to detect and identify the crystallization of sodium sulfate hydrates (i.e., mirabilite and heptahydrate) upon cooling/heating a bulk solution. The presence of impurities seems to play a major role in the crystallization sequence and can explain the crystallization of mirabilite and ice close to −10 °C. The crystallization of heptahydrate does not seem to be sensitive to the presence of impurities and does not always occur prior to the crystallization of mirabilite as commonly observed. The heptahydrate and mirabilite show different and characteristic thermal signatures that enable to distinguish each other. The shape, the intensity and the duration of the peak of temperature due to the crystallization depict these differences. Therefore, the thermal signatures can be used in further experimental studies to estimate the role of the different sodium sulfate hydrates involved in the salt weathering of rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amirthalingam V, Karkhanavala MD, Rao URK (1977) Topotaxic phase change in Na2SO4. Acta Crystallogr Sect A Cryst Phys Diffr Theor Gen Crystallogr 33(3):522

    Article  Google Scholar 

  • Anderson AB (1984) Mechanism for forming hydrogen chloride and sodium sulfate from sulfur trioxide, water, and sodium chloride. J Am Chem Soc 106(21):6262–6265

    Article  Google Scholar 

  • Barrere F, Snel MM, Van Blitterswijk CA, De Groot K, Layrolle P (2004) Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants. Biomaterials 25(14):2901–2910

    Article  Google Scholar 

  • Bing H, He P, Yang C, Shi Y, Zhao S, Bian X (2007) Impact of sodium sulfate on soil frost heaving in an open system. Appl Clay Sci 35(3):189–193

    Article  Google Scholar 

  • Correns CW (1949) Growth and dissolution of crystals under linear pressure. Discuss Faraday Soc 5:267–271

    Article  Google Scholar 

  • De Coppet LC (1901) Sur l’heptahydrate de sulfate de sodium. Bulletin de la Societe Vaudoise des Sciences Naturelles 37:141

  • Derluyn H, Saidov TA, Espinosa-Marzal RM, Pel L, Scherer GW (2011) Sodium sulfate heptahydrate I: the growth of single crystals. J Cryst Growth 329(1):44–51

    Article  Google Scholar 

  • Desarnaud J (2009) Mécanisme de croissance et dissolution de cristaux de KCl sous charge: Apport dans la connaissance des mécanismes d’altération des pierres par les sels. Doctoral dissertation Université Paul Cézanne-Aix-Marseille III

  • Espinosa RM, Franke L, Deckelmann G (2008) Model for the mechanical stress due to the salt crystallization in porous materials. Constr Build Mater 22(7):1350–1367

    Article  Google Scholar 

  • Espinosa-Marzal RM, Scherer GW (2008) Crystallization of sodium sulfate salts in limestone. Environ Geol 56(3–4):605–621

    Article  Google Scholar 

  • Flatt RJ (2002) Salt damage in porous materials: how high supersaturations are generated. J Cryst Growth 242(3):435–454

    Article  Google Scholar 

  • Gans W (1978) Thermodynamic stability of sodium sulfate heptahydrate. Z Phys Chem 111(1):39–46

    Article  Google Scholar 

  • Genkinger S, Putnis A (2007) Crystallisation of sodium sulfate: supersaturation and metastable phases. Environ Geol 52(2):329–337

    Article  Google Scholar 

  • Goudie A, Viles HA (1997) Salt weathering hazards. Wiley, Chichester 241

    Google Scholar 

  • Grossi CM, Esbert RM, del Río LS, Montoto M, Laurenzi-Tabasso M (1997) Acoustic emission monitoring to study sodium sulphate crystallization in monumental porous carbonate stones. Stud Conserv 42(2):115–125

    Article  Google Scholar 

  • Gunn DJ (1980) Effect of surface roughness on the nucleation and growth of calcium sulphate on metal surfaces. J Cryst Growth 50(2):533–537

    Article  Google Scholar 

  • Hall C, Hamilton A (2008) The heptahydrate of sodium sulfate: does it have a role in terrestrial and planetary geochemistry? Icarus 198(1):277–279

    Article  Google Scholar 

  • Hamilton A, Hall C (2008) Sodium sulfate heptahydrate: a synchrotron energy-dispersive diffraction study of an elusive metastable hydrated salt. J Anal At Spectrom 23(6):840–844

    Article  Google Scholar 

  • Hamilton A, Menzies RI (2010) Raman spectra of mirabilite, Na2SO4·10H2O and the rediscovered metastable heptahydrate, Na2SO4·7H2O. J Raman Spectrosc 41(9):1014–1020

    Article  Google Scholar 

  • Hamilton A, Hall C, Pel L (2008) Sodium sulfate heptahydrate: direct observation of crystallization in a porous material. J Phys D Appl Phys 41(21):212002

    Article  Google Scholar 

  • Hartley H, Jones BM, Hutchinson GA (1908) LXXV—The spontaneous crystallisation of sodium sulphate solutions. J Chem Soc Trans 93:825–833

    Article  Google Scholar 

  • Lei C, Peng Z, Day T, Yan X, Bai X, Yuan C (2011) Experimental observation of surface morphology effect on crystallization fouling in plate heat exchangers. Int Commun Heat Mass Transf 38(1):25–30

    Article  Google Scholar 

  • Loewel H (1850) Observations sur la sursaturation des dissolutions salines. Ann Chim Phys 29:62–117

    Google Scholar 

  • Malin MC (1974) Salt weathering on Mars. J Geophys Res 79(26):3888–3894

    Article  Google Scholar 

  • Marliacy P, Solimando R, Bouroukba M, Schuffenecker L (2000) Thermodynamics of crystallization of sodium sulfate decahydrate in H2O–NaCl–Na2SO4: application to Na2SO4·10 H2O-based latent heat storage materials. Thermochim Acta 344(1):85–94

    Article  Google Scholar 

  • Oswald ID, Hamilton A, Hall C, Marshall WG, Prior TJ, Pulham CR (2008) In situ characterization of elusive salt hydrates: the crystal structures of the heptahydrate and octahydrate of sodium sulfate. J Am Chem Soc 130(52):17795–17800

    Article  Google Scholar 

  • Pel L, Saidov TA (2013) The thermodynamic and poromechanic crystallization pressure of sodium sulfate heptahydrate: an NMR study. Poromechanics V 782–789. doi:10.1061/9780784412992.094

  • Pel L, Saidov TA, Espinosa-Marzal RM, Scherer GW (2010) The formation of metastable sodium sulfate heptahydrate in porous materials as studied by NMR. Proceedings of the MEDACHS10 47–54

  • Rijniers LA, Pel L, Huinink HP, Kopinga K (2005) Salt crystallization as damage mechanism in porous building materials, a nuclear magnetic resonance study. Magn Reson Imaging 23(2):273–276

    Article  Google Scholar 

  • Rodriguez-Navarro C, Doehne E (1999) Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern. Earth Surf Proc Land 24:191–209

    Article  Google Scholar 

  • Rodriguez-Navarro C, Doehne E, Sebastian E (2000) How does sodium sulfate crystallize? Implications for the decay and testing of building materials. Cem Concr Res 30(10):1527–1534

    Article  Google Scholar 

  • Saidov TA (2012) Sodium sulfate heptahydrate in weathering phenomena of porous materials. Doctoral dissertation, Ph. D thesis, Eindhoven University of Technology, The Netherlands

  • Saidov TA, Espinosa-Marzal RM, Pel L, Scherer GW (2012) Nucleation of sodium sulfate heptahydrate on mineral substrates studied by nuclear magnetic resonance. J Cryst Growth 338(1):166–169

    Article  Google Scholar 

  • Saidov TA, Shahidzadeh N, Pel L (2013) Crystallization of sodium sulfate on hydrophilic/hydrophobic surfaces during drying: an NMR study. EPL (Europhys Lett) 102(2):28003

    Article  Google Scholar 

  • Scherer GW (2004) Stress from crystallization of salt. Cem Concr Res 34:1613–1624

    Article  Google Scholar 

  • Sen S, Mukerji T (1999) A generalized classical nucleation theory for rough interfaces: application in the analysis of homogeneous nucleation in silicate liquids. J Non-Cryst Solids 246(3):229–239

    Article  Google Scholar 

  • Shahidzadeh-Bonn N, Rafaï S, Bonn D, Wegdam G (2008) Salt crystallization during Evaporation: impact of interfacial properties. Langmuir 24(16):8599–8605

    Article  Google Scholar 

  • Sperling CHB, Cooke RU (1985) Laboratory simulation of rock weathering by salt crystallization and hydration processes in hot, arid environments. Earth Surf Proc Land 10(6):541–555

    Article  Google Scholar 

  • Steiger M (2005a) Crystal growth in porous materials––I: the crystallization pressure of large crystals. J Cryst Growth 282(3–4):455–469

    Article  Google Scholar 

  • Steiger M (2005b) Crystal growth in porous materials––II: influence of crystal size on the crystallization pressure. J Cryst Growth 282(3–4):470–481

    Article  Google Scholar 

  • Steiger M, Asmussen S (2008) Crystallization of sodium sulfate phases in porous materials: the phase diagram Na2SO4–H2O and the generation of stress. Geochim Cosmochim Acta 72(17):4291–4306

    Article  Google Scholar 

  • Tsui N, Flatt RJ, Scherer GW (2003) Crystallization damage by sodium sulfate. J Cult Herit 4(2):109–115

    Article  Google Scholar 

  • Washburn ER, Clem WJ (1938) The transition temperature of sodium sulfate heptahydrate. J Am Chem Soc 60(4):754–757

    Article  Google Scholar 

  • Winkler EM, Singer PC (1972) Crystallization pressure of salts in stone and concrete. Geol Soc Am Bull 83(11):3509–3514

    Article  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the Fondation des Sciences du Patrimoine (Patrima) and a PhD grant from the University of Cergy-Pontoise. The LPPI is acknowledged for the access to the DSC facilities. The two anonymous referees are acknowledged for their constructive reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. C. Denecker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denecker, M.F.C., Hebert, R.L., Wassermann, J. et al. Experimental study of the crystallization of sodium sulfate hydrates through temperature monitoring. Environ Earth Sci 72, 5089–5099 (2014). https://doi.org/10.1007/s12665-014-3379-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3379-2

Keywords

Navigation