Skip to main content

Advertisement

Log in

Trend analysis and uncertainties of mean surface air temperature, precipitation and extreme indices in CMIP3 GCMs in Distrito Federal, Brazil

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

A key challenge for climate projection science is to serve the growing needs of impact assessments in an environment with substantial differences in the projections of climate models and an increasing number of relevant climate model results. In order to assist the assessment of water resources impacts under future climate change, this work provides a synthesis of the simulations of General Circulation Models (GCMs) for the region of Distrito Federal, Brazil. The work analyzes projections of mean surface air temperature and precipitation of 22 GCMs, as well as seven extreme indices of 10 GCMs. Trends of the multi-model ensemble median, as well as their significance, were calculated. The consistency in the sign of change was assessed through the percentage of agreement of simulations with the median. Finally, the probability density function of the multi-model ensemble provides valuable information about the uncertainties of projections. Investigations were performed for annual and seasonal temporal scales for the period 2011–2050. The main results here identified are: (a) a consensus of the multi-model ensemble and median to increasing temperature; (b) a slightly, but less consistent, decrease of precipitation in the dry season; and (c) increase of heat waves and droughts events, although changes in precipitation extremes are much less coherent than for temperature. The approach used gives a comprehensive assessment of the possible future climate until the middle of the twenty-first century, as well as the uncertainties involved in the multi-model ensemble projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andronova NG, Schlesinger ME (2001) Objective estimation of the probability density function for climate sensitivity. J Geophys Res 106(D19):22605–22611. doi:10.1029/2000JD000259

    Article  Google Scholar 

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232. doi:10.1038/nature01092

    Article  Google Scholar 

  • Allen MR, Stainforth DA (2002) Towards objective probabilistic climate forecasting. Nature 419:228. doi:10.1038/nature01092a

    Article  Google Scholar 

  • Barfus K, Bernhofer C (2014) Assessment of GCM performances for the Arabian Peninsula, Brazil, and Ukraine and indications of regional climate change. Environ Earth Sci (this issue). doi:10.1007/s12665-014-3147-3

  • Bombardi RJ, Carvalho LMV (2009) IPCC global coupled climate model simulations of the South America Monsoon System. Clim Dyn 33:893–916. doi:10.1007/s00382-008-0488-1

    Article  Google Scholar 

  • Borges PA, Franke J, Silva FDS, Weiss H, Bernhofer C (2014) Differences between two climatological periods (2001–2010 vs. 1971–2000) and trend analysis of temperature and precipitation in Central Brazil. Theor and Appl Climatol 116:191–202. doi:10.1007/s00704-013-0947-4

  • Boulanger J-P, Martinez F, Segura EC (2006) Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 1: Temperature mean state and seasonal cycle in South America. Clim Dyn 27:233–259. doi:10.1007/s00382-006-0134-8

    Article  Google Scholar 

  • Brankovic C, Palmer TN (1997) Atmospheric seasonal predictability and estimates of ensemble size. Mon Wea Rev 125:859–874. doi:10.1175/1520-0493(1997)125<0859:ASPAEO>2.0.CO;2

    Article  Google Scholar 

  • Carvalho LMV, Jones C, Liebmann B (2002) Extreme precipitation events in Southeastern South America and Large-Scale Convective Patterns in the South Atlantic Convergence Zone. J Climate 15:2377–2394. doi:10.1175/1520-0442(2002)015<2377:EPEISS>2.0.CO;2

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 847–940

    Google Scholar 

  • Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Kiehl JT, Briegleb B (2004) Description of the NCAR Community Atmosphere Model (CAM3.0). Technical Note TN-464 + STR, National Center for Atmospheric Research. http://hanson.geog.udel.edu/~hanson/hanson/CLD_GCM_Experiment_S11_files/description.pdf

  • CSMD—Climate System Modeling Division (2005) An introduction to the first general operational climate model at the National Climate Center. Advances in Climate System Modeling, 1, National Climate Center, China Meteorological Administration

  • Déqué M (1997) Ensemble size for numerical seasonal forecasts. Tellus 49A:74–86. doi:10.1034/j.1600-0870.1997.00005.x

    Article  Google Scholar 

  • Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model: a contribution to the French community climate modeling. Clim Dyn 10:249–266. doi:10.1007/BF00208992

    Article  Google Scholar 

  • Dessai S, Lu X, Hulme M (2005) Limited sensitivity analysis of regional climate change probabilities for the 21st century. J Geophys Res 110:D19108. doi:10.1029/2005JD005919

    Article  Google Scholar 

  • Di Luca A, de Elia R, Laprise R (2012) Potential for added value in precipitation simulated by high-resolution nested Regional Climate Models and observations. Climate Dyn 38:1229–1247. doi:10.1007/s00382-011-1068-3

    Article  Google Scholar 

  • Dobler C, Hagemann S, Wilby RL, Stötter J (2012) Quantifying different sources of uncertainty in hydrological projections in an Alpine watershed. Hydrol Earth Syst Sci 16:4343–4360. doi:10.5194/hess-16-4343-2012

    Article  Google Scholar 

  • Feser F, Rockel B, von Storch H, Winterfeldt J, Zahn M (2011) Regional climate models add value to global model data: a review and selected examples. Bull Am Meteorol Soc 92:1181–1192. doi:10.1175/2011BAMS3061.1

    Article  Google Scholar 

  • Flato GM (2005) The Third Generation Coupled Global Climate Model (CGCM3). http://www.cccma.bc.ec.gc.ca/models/cgcm3.shtml. Accessed 6 May 2013

  • Forest CE, Stone PH, Sokolov AP, Allen MR, Webster MD (2002) Quantifying uncertainties in climate system properties with the use of recent climate observations. Science 295(5552):113–117. doi:10.1126/science.1064419

    Article  Google Scholar 

  • Furrer R, Sain S, Nychka D, Meehl G (2007) Multivariate Bayesian analysis of atmosphere–ocean general circulation models. Environ Ecol Stat 14:249–266. doi:10.1007/s10651-007-0018-z

    Article  Google Scholar 

  • Galin VY, Volodin EM, Smyshliaev SP (2003) Atmospheric general circulation model of INM RAS with ozone dynamics. Russ Meteorol Hydrol 5:13–22

    Google Scholar 

  • GFDL (2004) The new GFDL global atmosphere and land model AM2-LM2: evaluation with prescribed SST simulations. J Clim 17:4641–4673. doi:10.1175/JCLI-3223.1

    Article  Google Scholar 

  • Giorgi F, Francisco R (2000) Evaluating uncertainties in the prediction of regional climate change. Geophys Res Lett 27:1295–1298. doi:10.1029/1999GL011016

    Article  Google Scholar 

  • Giorgi F, Mearns LO (2002) Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “Reliability Ensemble Average” (REA) method. J Clim 15:1141–1158. doi:10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2

    Article  Google Scholar 

  • Girvetz EH, Zganjar C, Raber GT, Maurer EP, Kareiva P, Lawler JJ (2009) Applied climate-change analysis: the climate wizard tool. PLoS ONE 4:e8320. doi:10.1371/journal.pone.0008320

    Article  Google Scholar 

  • Gordon HB, Rotstayn LD, McGregor JL, Dix MR, Kowalczyk EA, O’Farrell SO, Waterman LJ, Hirst AC, Wilson SG, Collier MA, Watterson IG, Elliott TI (2002) The CSIRO Mk3 Climate System Model. Commonwealth Scientific and Industrial Research Organisation Atmospheric Research. http://www.cmar.csiro.au/e-print/open/gordon_2002a.pdf. Accessed 6 May 2013

  • Greene AM, Goddard L, Lall U (2006) Probabilistic multimodel regional temperature change projections. J Clim 19:4326–4343. doi:10.1175/JCLI3864.1

    Article  Google Scholar 

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90:1095–1107. doi:10.1175/2009BAMS2607.1

    Article  Google Scholar 

  • Hagedorn R, Doblas-Reyes FJ, Palmer TN (2005) The rationale behind the success of multi-model ensembles in seasonal forecasting. Part I: basic concept. Tellus 57A:219–233. doi:10.1111/j.1600-0870.2005.00103.x

    Article  Google Scholar 

  • Helsel DR, Hirsch RM (2002) Statistical methods in water resources techniques of water resources investigations. US Geological Survey, USA

    Google Scholar 

  • Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne J-L, Fairhead L, Filiberti M-A, Friedlingstein P, Grandpeix J-Y, Krinner G, LeVan P, Li Z-X, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27(7–8):787–813. doi:10.1007/s00382-006-0158-0

    Article  Google Scholar 

  • IPCC (2000) Special report on emissions scenarios. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007) Summary for policy makers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jones PW (1998) A user’s guide for SCRIP: a spherical coordinate remapping and interpolation package, Los Alamos National Laboratory. http://climate.lanl.gov/Software/SCRIP/. Accessed 5 Mar 2013

  • K-1 Model Developers (2004) K-1 Coupled Model (MIROC) Description. In: Hasumi H, Emori S (eds) K-1 Technical Report 1. Center for Climate System Research, University of Tokyo. http://www.ccsr.u-tokyo.ac.jp/kyosei/hasumi/MIROC/tech-repo.pdf. Accessed 3 May 2013

  • Kalbus E, Kalbacher T, Kolditz O, Krüger E, Seegert J, Teutsch G, Krebs P, Borchardt D (2012) IWAS—integrated water resources management under different hydrological, climatic and socio-economic conditions. Environ Earth Sci 65(5):1363–1366. doi:10.1007/s12665-011-1330-3

    Article  Google Scholar 

  • Katz RW, Parlange MB, Naveau P (2002) Statistics of extremes in hydrology. Adv Water Resour 25:1287–1304. doi:10.1016/S0309-1708(02)00056-8

    Article  Google Scholar 

  • Kendall MG (1970) Rank correlation methods, 4th edn. Griffin, London

    Google Scholar 

  • Kiehl JT, Hack JJ, Bonan GB, Boville BA, Williamson DL, Rasch PJ (1998) The National Center for Atmospheric Research Community Climate Model: CCM3. J Clim 11:1131–1149. doi:10.1175/1520-0442(1998)011<1131:TNCFAR>2.0.CO;2

    Article  Google Scholar 

  • Kiktev D, Sexton DMH, Alexander L, Folland CK (2003) Comparison of modeled and observed trends in indices of daily climate extremes. J Clim 16:3560–3571. doi:10.1175/1520-0442(2003)016<3560:COMAOT>2.0.CO;2

    Article  Google Scholar 

  • Knutti R, Stocker TF, Joos F, Plattner G-K (2002) Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature 416(6882):719–723. doi:10.1038/416719a

    Article  Google Scholar 

  • Knutti R, Stocker TF, Joos F, Plattner G-K (2003) Probabilistic climate change projections using neural networks. Clim Dyn 21(3–4):257–272. doi:10.1007/s00382-003-0345-1

    Article  Google Scholar 

  • Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J Clim 23(10):2739–2758. doi:10.1175/2009JCLI3361.1

    Article  Google Scholar 

  • Kundzewicz ZW, Mata LJ, Arnell NW, Döll P, Kabat P, Jiménez B, Miller KA, Oki T, Sen Z, Shiklomanov IA (2007) Freshwater resources and their management. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate Change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 173–210

    Google Scholar 

  • Laprise R (2008) Regional climate modelling. J Comput Phys 227:3641–3666. doi:10.1016/j.jcp.2006.10.024

    Article  Google Scholar 

  • Liepert BG, Previdi M (2012) Inter-model variability and biases of the global water cycle in CMIP3 coupled climate models. Environ Res Lett 7:014006. doi:10.1088/1748-9326/7/1/014006

    Article  Google Scholar 

  • Lin J-L, Shinoda T, Liebmann B, Qian T, Han W, Roundy P, Zhou J, Zheng Y (2009) Intraseasonal variability associated with summer precipitation over South America Simulated by 14 IPCC AR4 Coupled GCMs. Mon Wea Rev 137:2931–2954. doi:10.1175/2009MWR2777.1

    Article  Google Scholar 

  • Lorz C, Abbt-Braun G, Bakker F, Borges P, Börnick H, Fortes L, Frimmel F, Gaffron A, Hebben N, Höfer R, Makeschin F, Neder K, Roig HL, Steiniger B, Strauch M, Walde DH, Weiß H, Worch E, Wummel J (2012) Challenges of an integrated water resource management for the Distrito Federal, Western Central Brazil: climate, land-use and water resources. Environ Earth Sci 65(5):1363–1366. doi:10.1007/s12665-011-1219-1

    Article  Google Scholar 

  • Lu X (2006) Guidance on the development of regional climate scenarios for application in climate change vulnerability and adaptation assessments. Within the framework of national communications from parties not included in Annex I to the United Nations Framework Convention on Climate Change, National Communications Support Programme, UNDP-UNEP-GEF, New York

  • Mann HB (1945) Nonparametric test against trends. Econometrica 13(3):245–259

    Article  Google Scholar 

  • Marengo JA (2009) Mudanças Climáticas: Detecção e cenários futuros para o Brasil até o final do século XXI. In: Cavalcanti IFA, Ferreira NJ, Da Silva MGAJ, Silva Dias MAF (ed) Tempo e Clima no Brasil. Oficina de Textos. São Paulo, pp 407–424

  • Marengo JA, Jones R, Alves LM, Valverde MC (2009) Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int J Climatol 15:2241–2255. doi:10.1002/joc.1863

    Article  Google Scholar 

  • Marengo JA, Rusticucci M, Penalba O, Renom M (2010) An intercomparison of observed and simulated extreme rainfall and temperature events during the last half of the twentieth century: part 2: historical trends. Clim Change 98:509–529. doi:10.1007/s10584-009-9743-7

    Article  Google Scholar 

  • Martin G, Dearden C, Greeves C, Hinton T, Inness P, James P, Pope V, Ringer M, Slingo J, Stratton R, Yang G-Y (2004) Evaluation of the atmospheric performance of HadGAM/GEM1. Hadley Centre Technical Note 54. www.metoffice.com/research/hadleycentre/pubs/HCTN/HCTN_54.pdf. Accessed 3 May 2013

  • Maurer EP, Adam JC, Wood AW (2009) Climate model based consensus on the hydrologic impacts of climate change to the Rio Lempa basin of Central America. Hydrol Earth Syst Sci 13:183–194. doi:10.5194/hess-13-183-2009

    Article  Google Scholar 

  • Mearns L, Hulme M, Carter T, Leemans R, Lal M, Whetton P (2001) Climate scenario development. In: Houghton JT, Ding Y, Griggs D, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate Change 2001: The scientific basis. contribution of working group I to the third assessment report of the intergovernmental panel of climate change. Cambridge University Press, Cambridge, pp 739–768

    Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University, Cambridge

    Google Scholar 

  • Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantifying uncertainties in climate change from a large ensemble of general circulation model predictions. Nature 430:768–772. doi:10.1038/nature02771

    Article  Google Scholar 

  • Nakicenovic N, Swart R (2000) Special report on emissions scenarios. A special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Nohara D, Kitoh A, Hosaka M, Oki T (2006) Impact of climate change on river discharge projected by multimodel ensemble. J Hydrometeorol 7:1076–1089. doi:10.1175/JHM531.1

    Article  Google Scholar 

  • Palmer TN (2000) Predicting uncertainty in forecasts of weather and climate. Prog Rep Phys 63:71–117. doi:10.1088/0034-4885/63/2/201

    Article  Google Scholar 

  • Palmer TN, Shutts GJ, Hagedorn R, Doblas-Reyes FJ, Jung T, Leutbecher M (2005) Representing model uncertainty in weather and climate prediction. Annu Rev Earth Planet Sci 33:4.1–4.31. doi:10.1146/annurev.earth.33.092203.122552

  • PBMC (2013) Contribuição do Grupo de Trabalho 1 ao Primeiro Relatório de Avaliação Nacional do Painel Brasileiro de Mudanças Climáticas. Sumário Executivo GT1. PBMC, Rio de Janeiro. http://www.pbmc.coppe.ufrj.br/documentos/MCTI_PBMC_Sumario%20Executivo%204_Finalizado.pdf. Accessed 31 Mar 2014

  • Pivetta M (2013) Extremos do Clima. Pesquisa FAPESP 210:16–20

    Google Scholar 

  • Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Clim Dyn 16:123–146. doi:10.1007/s003820050009

    Article  Google Scholar 

  • Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Cilmate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 589–662

    Google Scholar 

  • Rapp J (2000) Konzeption, Problematik und Ergebnisse klimatologischer Trendanalysen für Europa und Deutschland. Bericht Nr. 212, Deutsch Wetterdienst, Offenbach

  • Räisänen J, Palmer TN (2001) A probability and decision model analysis of a multimodel ensemble of climate change simulations. J Clim 14:3212–3226. doi:10.1175/1520-0442(2001)014<3212:APADMA>2.0.CO;2

    Article  Google Scholar 

  • Reilly J, Stone PH, Forest CE, Webster MD, Jacoby HD, Prinn RG (2001) Uncertainty in climate change assessments. Science 293:430–433. doi:10.1126/science.1062001

    Article  Google Scholar 

  • Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996) The Atmospheric General Circulation Model ECHAM4: model description and simulation of present-day climate. MPI Report No. 218, Max-Planck-Institut für Meteorologie. http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/MPI-Report_218.pdf. Accessed 3 May 2013

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The Atmospheric General Circulation Model ECHAM5. Part I: Model Description. MPI Report 349, Max Planck Institute for Meteorology. http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/max_scirep_349.pdf. Accessed 3 May 2013

  • Russell GL (2005) 4x3 Atmosphere-Ocean Model Documentation. NASA. http://aom.giss.nasa.gov/doc4x3.html. Accessed 3 May 2013

  • Salas D (1993) Analysis and modeling of hydrologic time series (Chapter 19). In: Maidment DR (ed) Handbook of hydrology. McGraw Hill, New York

    Google Scholar 

  • Schönwiese CD (2000) Praktische Statistik für Meteorologen und Geowissenschaftler. Gebrüder Borntaeger 3, Berlin

  • Schmidt GA et al (2006) Present-Day atmospheric simulations using GISS ModelE: comparison to in situ, satellite, and reanalysis data. J Clim 19:153–192. doi:10.1175/JCLI3612.1

    Article  Google Scholar 

  • Selten FM, Branstator GW, Kliphuis M, Dijkstra HA (2004) Tropical origins for recent and future northern hemisphere climate change. Geophys Res Lett 31:L21205. doi:10.1029/2004GL020739

    Article  Google Scholar 

  • Seth A, Rojas M, Rauscher SA (2010) CMIP3 projected changes in the annual cycle of the South American Monsoon. Clim Change 98:331–357. doi:10.1007/s10584-009-9736-6

    Article  Google Scholar 

  • Shibata K, Yoshimura H, Ohizumi M, Hosaka M, Sugi M (1999) A simulation of troposphere, stratosphere and mesosphere with an MRI/JMA98 GCM. Pap Meteorol Geophys 50:15–53. doi:10.2467/mripapers.50.15

    Article  Google Scholar 

  • Stainforth DA, Aina T, Christensen C, Collins M, Faull N, Frame DJ, Kettleborough JA, Knight SA, Martin A, Murphy JM, Piani C, Sexton D, Smith LA, Spicer RA, Thorpe AJ, Allen MR (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433:403–406. doi:10.1038/nature03301

    Article  Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster J, Meehl G (2006) Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Clim Change 79(3–4):185–211. doi:10.1007/s10584-006-9051-4

    Article  Google Scholar 

  • Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Phil Trans R Soc A365:2053–2075. doi:10.1098/rsta.2007.2076

    Article  Google Scholar 

  • Torres RR, Lapola DM, Marengo JA, Lombardo MA (2012) Socio-climatic hotspots in Brazil. Clim Change 115(3–4):597–609. doi:10.1007/s10584-012-0461-1

    Article  Google Scholar 

  • Torres RR, Marengo JA (2013) Uncertainty assessments of climate change projections over South America. Theor Appl Climatol 112(1–2):253–272. doi:10.1007/s00704-012-0718-7

    Article  Google Scholar 

  • van der Linden P, Mitchell JFB (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter

  • Vera C, Silvestri G (2009) Precipitation interannual variability in South America from the WCRP-CMIP3 multi-model dataset. Clim Dyn 32(7–8):1003–1014. doi:10.1007/s00382-009-0534-7

    Article  Google Scholar 

  • Vera C, Silvestri G, Liebmann B, González P (2006a) Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models. Geophys Res Lett 33:L13707. doi:10.1029/2006GL025759

    Article  Google Scholar 

  • Vera C, Higgins W, Amador J, Ambrizzi T, Garreaud R, Gochis D, Gutzler D, Lettenmaier D, Marengo J, Mechoso CR, Nogues-Paegle J, Silva Diaz PL, Zhang C (2006b) Towards a unified view of the American Monsoon System. J Clim 19:4977–5000

    Article  Google Scholar 

  • Wang B, Wan H, Ji Z, Zhang X, Yu R, Yu Y, Liu H (2004) Design of a new dynamical core for global atmospheric models based on some efficient numerical methods. Sci China A 47:4–21. doi:10.1360/04za0001

    Article  Google Scholar 

  • Wang G (2005) Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment. Clim Dyn 25:739–753. doi:10.1007/s00382-005-0057-9

    Article  Google Scholar 

  • Wilby RL, Charles SP, Zorita E, Timbal B, Whetton P, Mearns LO (2004) Guidelines for use of climate scenarios developed from statistical downscaling methods. IPCC task group on data and scenario support for impact and climate analysis (TGICA), http://ipcc-ddc.cru.uea.ac.uk/gu-idelines/StatDown_Guide.pdf

  • Wilby RL, Dessai S (2010) Robust adaptation to climate change. Weather 65:180–185. doi:10.1002/wea.543

    Article  Google Scholar 

  • Wilks DS (2011) Statistical methods in the atmospheric sciences, 3rd edn. Academic Press, Burlington

    Google Scholar 

  • Wood AW, Maurer EP, Kumar A, Lettenmaier DP (2002) Long range experimental hydrologic forecasting for the eastern U.S. J Geophys Res 107(D20):4429. doi:10.1029/2001JD000659

    Article  Google Scholar 

  • Zhou J, Lau KM (1998) Does a monsoon climate exist over South America? J Clim 11:1020–1040. doi:10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the International Water Research Alliance Saxony—IWAS initiative (Grant 02WM1028) and the International Postgraduate Studies in Water Technologies—IPSWaT scholarship program (Grant number IPS 10/15P), both funded by the German Federal Ministry of Education and Research—BMBF, for the opportunity given. Thanks to the international modelling groups for providing their data, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and Working Group on Coupled Modelling (WGCM) of the World Climate Research Programme (WCRP) for collecting and archiving the data, the Coupled Model Intercomparison Project (CMIP) for organizing the model data analysis, and technical support IPCC WG1 TSU. Access to data and technical assistance is provided by the Earth System Grid II (ESG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo de Amorim Borges.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amorim Borges, P.d., Barfus, K., Weiss, H. et al. Trend analysis and uncertainties of mean surface air temperature, precipitation and extreme indices in CMIP3 GCMs in Distrito Federal, Brazil. Environ Earth Sci 72, 4817–4833 (2014). https://doi.org/10.1007/s12665-014-3301-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3301-y

Keywords

Navigation