Skip to main content

Advertisement

Log in

AI-enabled dental caries detection using transfer learning and gradient-based class activation mapping

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Dental caries detection holds the key to unlocking brighter smiles and healthier lives by identifying one of the most common oral health issues early on. This vital topic sheds light on innovative ways to combat tooth decay, empowering individuals to take control of their oral health and maintain radiant smiles. This research paper delves into the realm of transfer learning techniques, aiming to elevate the precision and efficacy of dental caries diagnosis. Utilizing Keras ImageDataGenerator, a rich and balanced dataset is crafted by augmenting teeth images from the Kaggle teeth dataset. Five cutting-edge pre-trained architectures are harnessed in the transfer learning approach: EfficientNetV2B3, VGG19, InceptionResNetV2, Xception, and ResNet50, with each model, initialized using ImageNet weights and tailored top layers. A comprehensive set of evaluation metrics, encompassing accuracy, precision, recall, F1-score, and false negative rates are employed to gauge the performance of these architectures. The findings unveil the unique advantages and drawbacks of each model, illuminating the path to an optimal choice for dental caries detection using Grad-CAM (Gradient-weighted Class Activation Mapping). The testing accuracies achieved by EfficientNetV2B3, VGG19, InceptionResNetV2, Xception, and ResNet50 models stand at 95.89%, 96.58%, 93.15%, 93.15%, and 94.18%, respectively. The Training accuracies stood at 100%, 99.91%, 100%, 100% and 100%, meanwhile on validation we achieved 97.63%, 96.68%, 98.82%, 96.68%, and 100% accuracies for EfficientNetV2B3, VGG19, InceptionResNetV2, Xception, and ResNet50 models respectively. Capitalizing on transfer learning and juxtaposing diverse pre-trained architectures, this research paper paves the way for substantial advancements in dental diagnostic capabilities, culminating in enhanced patient outcomes and superior oral health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1:
Fig. 4
Algorithm 2:
Fig. 5
Algorithm 3:
Fig. 6
Algorithm 4:
Fig. 7
Algorithm 5:
Algorithm 6:
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Kumar Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inani, H., Mehta, V., Bhavsar, D. et al. AI-enabled dental caries detection using transfer learning and gradient-based class activation mapping. J Ambient Intell Human Comput (2024). https://doi.org/10.1007/s12652-024-04795-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12652-024-04795-x

Keyword

Navigation