Skip to main content

Advertisement

Log in

Modified Luo converter based FOPID controller for torque ripple minimization in BLDC drive system

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

The Smart controller for brushless direct current (BLDC) Motor Drive System Speed Regulation Using Multi-Purpose Feature is proposed in this paper. The novelty of the presented approach lays in precisely maintains the level of the voltage source inverter DC voltage demanded proper operation of the motor. The optimum gain parameters are required with the use of the Fractional order PID controller (FOPID) controller to reduce the torque ripples and regulate the BLDC motor speed. The hybrid technique is the synthesis of a modified Luo converter based on the Adaptive neuro-fuzzy inference system (ANFIS) and Elephant herding optimization (EHO). Initially, the nature-inspired optimization algorithm of the EHO is analyzed to find the error function. In addition, the efficient ANFIS controller is made by integrating a systematic approach to track error functions in order to provide the best optimal gain values. Harmonics and torque ripples are reduced with this control strategy. Speed ​​and torque output was evaluated based on the proposed control strategy.. The hybrid technology suggested is the combination of ANFIS and EHO to control the speed based on the BLDC motor power parameters. Intel(R) Core(TM) i5 CPUs, 4 GB RAM, and MATLAB/Simulink 7.10.0 (R2015a) technologies to reduce the torque on the BLDC motor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Agarwal J, Parmar G, Gupta R, Sikander A (2018) Analysis of grey wolf optimizer based fractional order PID controller in speed control of DC motor. Int J Microsyst Technol 24(12):4997–5006

    Article  Google Scholar 

  • Bejarbaneh E, Bagheri A, Bejarbaneh BY, Buyamin S, Chegini SN (2019) A new adjusting technique for PID type fuzzy logic controller using PSOSCALF optimization algorithm. Appl Soft Comput 85:105822

    Article  Google Scholar 

  • Carey KD, Zimmerman N, Ababei C (2019) Hybrid field oriented and direct torque control for sensorless BLDC motors used in aerial drones. IET Power Electron 12(3):438–449

    Article  Google Scholar 

  • Castro AG, Pereira WCA, Almeida TEP, Oliveira CMR, Almeida Monteiro JRB, Oliveira AA (2018) Improved finite control-set model-based direct power control of BLDC motor with reduced torque ripple. IEEE Trans Ind Appl 54(5):4476–4484

    Article  Google Scholar 

  • Chen S, Liu G, Zhu L (2017) Sensorless control strategy of a 315 kW high-speed BLDC motor based on a speed-independent flux linkage function. IEEE Trans Industr Electron 64(11):8607–8617

    Article  Google Scholar 

  • Cheshmehbeigi HM, Karami E (2018) Maximum output torque control in improved flux path homo polar brushless DC motor with axillary field by using optimal control of turn-ON and turn-OFF angles in variable speed applications. IEEE J Emerg Sel Top Power Electron 6(4):1722–1731

    Article  Google Scholar 

  • El Ouanjli N, Motahhir S, Derouich A, El Ghzizal A, Chebabhi A, Taoussi M (2019) Improved DTC strategy of doubly fed induction motor using fuzzy logic controller. Energy Rep 5:271–279

    Article  Google Scholar 

  • Hannon B, Sergeant P, Dupre L (2018) Evaluation of the torque in high-speed PMSMs with a shielding cylinder and BLDC control. IEEE Trans Magn 54(10):1–8

    Article  Google Scholar 

  • Hassanien AE, Kilany M, Houssein EH, AlQaheri H (2018) Intelligent human emotion recognition based on elephant herding optimization tuned support vector regression. Int J Biomed Signal Process Control 45:182–191

    Article  Google Scholar 

  • Jafarboland M, Silabi MHR (2019) New sensorless commutation method for BLDC motors based on the line-to-line flux linkage theory. IET Electr Power Appl 13(6):703–711

    Article  Google Scholar 

  • Jiang B, Karimi HR, Kao Y, Gao C (2018) A novel robust fuzzy integral sliding mode control for nonlinear semi-Markovian jump T-S fuzzy systems. IEEE Trans Fuzzy Syst 26(6):3594–3604

    Article  Google Scholar 

  • Kumar R, Singh B (2017) Solar PV powered BLDC motor drive for water pumping using Cuk converter. IET Electr Power Appl 11(2):222–232

    Article  Google Scholar 

  • Lee W, Kim JH, Choi W, Sarlioglu B (2018) Torque ripple minimization control technique of high-speed single-phase brushless DC motor for electric turbocharger. IEEE Trans Veh Technol 67(11):10357–10365

    Article  Google Scholar 

  • Li P, Sun W, Shen JX (2018) Flux observer model for sensorless control of PM BLDC motor with a damper cage. IEEE Trans Ind Appl 55(2):1272–1279

    Article  Google Scholar 

  • Liu K, Yin M, Hua W, Ma Z, Lin M, Kong Y (2018) Design and analysis of Halbach ironless flywheel BLDC motor/generators. IEEE Trans Magn 54(11):1–5

    Google Scholar 

  • Maharajan MP, Xavier SAE (2018) Design of speed control and reduction of torque ripple factor in BLDC motor using spider based controller. IEEE Trans Power Electron 34(8):7826–7837

    Article  Google Scholar 

  • Malliga MS, Swetha MA, Asha MA, Uma MM (2017) Control of brushless DC motor drive with BL luo converter using sliding mode control. Int J Res Appl Sci Eng Technol 5(IV):128–134. https://doi.org/10.22214/ijraset.2017.4027

    Article  Google Scholar 

  • Meena NK, Parashar S, Swarnkar A, Gupta N, Niazi KR (2017) Improved elephant herding optimization for multiobjective DER accommodation in distribution systems. IEEE Trans Ind Inf 14(3):1029–1039

    Article  Google Scholar 

  • Park JS, Lee KD, Lee SG, Kim WH (2018) Unbalanced ZCP compensation method for position sensorless BLDC motor. IEEE Trans Power Electron 34(4):3020–3024

    Article  Google Scholar 

  • Potnuru D, Ch S (2018) Design and implementation methodology for rapid control prototyping of closed-loop speed control for BLDC motor. Int J Electric Syst Inf Technol 5(1):599–111

    Google Scholar 

  • Potnuru D, Mary KA, Babu CS (2019) Experimental implementation of Flower Pollination Algorithm for speed controller of a BLDC motor. Ain Shams Eng J 10(2):287–295

    Article  Google Scholar 

  • Premkumar K, Manikandan BV (2015) Speed control of brushless DC motor using bat algorithm optimized adaptive neuro-fuzzy inference system. An Int J Appl Soft Comput 32:403–419

    Article  Google Scholar 

  • Sashidhar S, Fernandes BG (2016) A novel ferrite SMDS spoke-type BLDC motor for PV bore-well submersible water pumps. IEEE Trans Industr Electron 64(1):104–114

    Article  Google Scholar 

  • Seol HS, Lim J, Kang D, Park JS, Lee J (2017) Optimal design strategy for improved operation of IPM BLDC motors with low-resolution hall sensors. IEEE Trans Industr Electron 64(12):9758–9766

    Article  Google Scholar 

  • Singh B, Bist V (2015) Power quality improvements in power factor correction Luo converter fed brushless direct current motor drive. Int Trans Electric Energy Syst 25(5):898–919

    Article  Google Scholar 

  • Singh PK, Singh B, Bist V, Al-Haddad K, Chandra A (2017) BLDC motor drive based on bridgeless landsman PFC converter with single sensor and reduced stress on power devices. IEEE Trans Ind Appl 54(1):625–635

    Article  Google Scholar 

  • Sivarani TS, Jawhar S, Kumar CA (2018) Novel bacterial foraging-based ANFIS for speed control of matrix converter-fed industrial BLDC motors operated under low speed and high torque. Neural Comput Appl 29(12):1411–1434

    Article  Google Scholar 

  • Song X, Han B, Wang K (2018) Sensorless drive of high-speed BLDC motors based on virtual 3rd-harmonic back-EMF and high-precision compensation. IEEE Trans Power Electron 34(9):8787–8796

    Article  Google Scholar 

  • Sun Q, Wu J, Gan C, Shi C, Guo J (2018) DSSRM design with multiple pole arcs optimization for high torque and low torque ripple applications. IEEE Access 6:27166–27175

    Article  Google Scholar 

  • Viswanathan V, Jeevananthan J (2017) Hybrid converter topology for reducing torque ripple of BLDC motor. An Int J IET Power Electron 33(1):1572–1587

    Article  Google Scholar 

  • Viswanathan V, Seenithangom J (2017) Commutation torque ripple reduction in the BLDC motor using modified SEPIC and three-level NPC inverter. IEEE Trans Power Electron 33(1):535–546

    Article  Google Scholar 

  • Zhao Y, Wang J, Yan F, Sen Y (2019) Adaptive sliding mode fault-tolerant control for type-2 fuzzy systems with distributed delays. Inf Sci 473:227–238

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou X, Chen X, Peng C, Zhou Y (2018) High performance non salient sensorless BLDC motor control strategy from standstill to high speed. IEEE Trans Industr Inf 14(10):4365–4375

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murali Dasari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Luo converter parameter

Parameters

Value

\(L_{in}\)

1 \({\text{mH}}\)

\(C_{in}\)

393.7 µF

\(L_{1}\),\(L_{2}\)

3.09 \({\text{mH}}\)

\(L_{3}\),\(L_{4}\)

486 µH

\(C_{1}\),\(C_{2}\)

393.8 nF

\(C_{0}\)

2123.1 µF

Nomenclature

\(V_{A} ,V_{B} \,\;{\text{and}}\;\,V_{C}\) :

Terminal three phase voltages of the stator winding

\(i_{A} ,i_{B} \,\;{\text{and}}\;\,i_{C}\) :

Stator phase current

\(e_{A} ,e_{B} \;{\text{and}}\;\,e_{C}\) :

Three-phase back EMF

\(L\) :

Armature self inductance

\(u_{N}\) :

Neural point of the motor voltage

\(K\) :

Constant of back EMF

\(\omega\) :

Angular speed of the rotor

\(\theta\) :

Rotor position

\(T_{e}^{ * }\) :

The reference torque of motor

\(Sw_{1}\) :

Luo converters switch

\(L_{i1} ,L_{o1}\) :

Inductors

\(D_{p} ,D_{p1}\) :

Diodes

\(Sw_{2}\) :

Supply voltage the switch

\(K_{p}\) :

Gain of proportionality

\(K_{i}\) :

The gain of Integral

\(K_{d}\) :

The gain of Derivative

\(\lambda \;{\text{and}}\;\mu\) :

The differential-integral's order

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasari, M., Reddy, A.S. & Kumar, M.V. Modified Luo converter based FOPID controller for torque ripple minimization in BLDC drive system. J Ambient Intell Human Comput 14, 7091–7108 (2023). https://doi.org/10.1007/s12652-021-03562-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-021-03562-6

Keywords

Navigation