Skip to main content

Advertisement

Log in

Antioxidant, Antimicrobial, and Anticancer Potential of Green Synthesized ZnO Nanoparticles from Açaí (Euterpe oleracea Mart.) Berry Seed Residue Extract

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Residue from the food agroindustry has been reported as an alternative source for generating novel by-products, potentially applied in green chemistry nanotechnology. In this work, the green synthesis of zinc oxide nanoparticles (ZnO NPs) using Brazilian Amazon açaí (Euterpe oleracea Mart.) berry seed residue extract was investigated as a sustainable alternative route. The formation of ZnO NPs was characterized by TGA, XRD, FTIR, and XPS. The characterization of ZnO NPs involved the examination of their morphology and size using TEM, SEM, EDX, and DLS techniques. ZnO NPs were assessed for their antioxidant, antimicrobial, and anticancer properties. The chromatographic results suggest that phytochemicals (e.g., flavonoids and alkaloids) from açaí berry seed influenced the formation of ZnO NPs, revealing a hexagonal wurtzite structure. The ZnO NPs exhibited a spherical morphology with a particle size of around 60 nm. ZnO NPs showed significant antioxidant activity radical scavenging by DPPH⋅ and FRAP assay, and they demonstrated antimicrobial activity against both Gram-negative (Escherichia coli and Salmonella enterica serovar Enteritidis) and Gram-positive (Staphylococcus aureus and Listeria monocytogenes) pathogenic bacteria. In vitro cytotoxicity results indicated that ZnO NPs had a significant biological and toxicological impact on the A431 human skin squamous carcinoma cell line (IC50 = 59.50 µg mL−1) and HaCaT human keratinocytes (IC50 = 57.58 µg mL−1). These findings suggest that ZnO NPs synthesized from the açaí berry seed agro-industrial residue hold potential as a sustainable alternative in several applications, including nanomedicine and food technology.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the paper.

References

  1. Saadi, H., Benzarti, Z., Sanguino, P., Pina, J., Abdelmoula, N., de Melo, J.S.S.: Enhancing the electrical conductivity and the dielectric features of ZnO nanoparticles through Co doping effect for energy storage applications. J. Mater. Sci. Mater. Electron. 34, 1–16 (2023). https://doi.org/10.1007/s10854-022-09470-5

    Article  Google Scholar 

  2. Hadi, A.J., Nayef, U.M., Mutlak, F.A.H., Jabir, M.S.: High-efficiency photodetectors based on zinc oxide nanostructures on porous silicon grown by pulsed laser deposition. Plasmonics 1, 1–17 (2023). https://doi.org/10.1007/s11468-023-02016-3

    Article  Google Scholar 

  3. Ali, J., Bibi, S., Jatoi, W.B., Tuzen, M., Jakhrani, M.A., Feng, X., Saleh, T.A.: Green synthesized zinc oxide nanostructures and their applications in dye-sensitized solar cells and photocatalysis: a review. Mater. Today Commun. 36, 106840 (2023). https://doi.org/10.1016/j.mtcomm.2023.106840

    Article  Google Scholar 

  4. Vieira, I.R.S., de Carvalho, A.P.A., Conte-Junior, C.A.: Recent advances in biobased and biodegradable polymer nanocomposites, nanoparticles, and natural antioxidants for antibacterial and antioxidant food packaging applications. Compr. Rev. Food Sci. Food Saf. (2022). https://doi.org/10.1111/1541-4337.12990

    Article  Google Scholar 

  5. Islam, F., Shohag, S., Uddin, M.J., Islam, M.R., Nafady, M.H., Akter, A., Mitra, S., Roy, A., BinEmran, T., Cavalu, S.: Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications. Materials 15, 2160 (2022). https://doi.org/10.3390/ma15062160

    Article  Google Scholar 

  6. Li, Y., Zhu, J., Zhao, N., Ma, G., Liu, B., Xu, J.: ZnO as a promising nanocarrier for efficient delivery of 5-fluorouracil anticancer drug. J. Iran. Chem. Soc. 20, 2871–2877 (2023). https://doi.org/10.1007/s13738-023-02883-x

    Article  Google Scholar 

  7. Du, W., Feng, K., Li, C., Li, S., Abidin, Z.U., Yin, H., Chen, S.: Controlled synthesis of zinc oxide nanoparticles through flame spray pyrolysis and evaluation of their anticancer effects against gastric cancer cell. Arab. J. Chem. 16, 105192 (2023). https://doi.org/10.1016/j.arabjc.2023.105192

    Article  Google Scholar 

  8. Ahmad, N., Ali, S., Abbas, M., Fazal, H., Saqib, S., Ali, A., Ullah, Z., Zaman, S., Sawati, L., Zada, A.: Antimicrobial efficacy of Mentha piperata-derived biogenic zinc oxide nanoparticles against UTI-resistant pathogens. Sci. Rep. 13, 1–16 (2023). https://doi.org/10.1038/s41598-023-41502-w

    Article  Google Scholar 

  9. Rajeshkumar, S., Kumar, S.V., Ramaiah, A., Agarwal, H., Lakshmi, T., Roopan, S.M.: Biosynthesis of zinc oxide nanoparticles using Mangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme Microb. Technol. 117, 91–95 (2018). https://doi.org/10.1016/j.enzmictec.2018.06.009

    Article  Google Scholar 

  10. Saeed, M., Al-Keridis, L.A., Khattak, S., Alshuraym, L., Alshammari, N., Al-Amrah, H., Upadhyay, T.K., Kesari, K.K.: Green synthesis of zinc oxide nanoparticles using egg white and coriander root waste: characterization and anti-cancer efficacy in Hela cells. Waste and Biomass Valorization. (2023). https://doi.org/10.1007/s12649-023-02318-x

    Article  Google Scholar 

  11. Efati, Z., Shahangian, S.S., Darroudi, M., Amiri, H., Hashemy, S.I., Aghamaali, M.R.: Green chemistry synthesized zinc oxide nanoparticles in Lepidium sativum L. seed extract and evaluation of their anticancer activity in human colorectal cancer cells. Ceram. Int. 49, 32568–32576 (2023). https://doi.org/10.1016/j.ceramint.2023.07.221

    Article  Google Scholar 

  12. Bai, D.P., Zhang, X.F., Zhang, G.L., Huang, Y.F., Gurunathan, S.: Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells. Int. J. Nanomedicine 12, 6521–6535 (2017). https://doi.org/10.2147/ijn.s140071

    Article  Google Scholar 

  13. Ruenraroengsak, P., Kiryushko, D., Theodorou, I.G., Klosowski, M.M., Taylor, E.R., Niriella, T., Palmieri, C., Yagüe, E., Ryan, M.P., Coombes, R.C., Xie, F., Porter, A.E.: Frizzled-7-targeted delivery of zinc oxide nanoparticles to drug-resistant breast cancer cells. Nanoscale 11, 12858–12870 (2019). https://doi.org/10.1039/c9nr01277j

    Article  Google Scholar 

  14. Cagliani, R., Fayed, B., Jagal, J., Shakartalla, S.B., Soliman, S.S.M., Haider, M.: Peptide-functionalized zinc oxide nanoparticles for the selective targeting of breast cancer expressing placenta-specific protein 1. Colloids Surf. B 227, 113357 (2023). https://doi.org/10.1016/j.colsurfb.2023.113357

    Article  Google Scholar 

  15. Yi, C., Yu, Z., Ren, Q., Liu, X., Wang, Y., Sun, X., Yin, S., Pan, J., Huang, X.: Nanoscale ZnO-based photosensitizers for photodynamic therapy. Photodiagn. Photodyn. Ther. 30, 101694 (2020). https://doi.org/10.1016/j.pdpdt.2020.101694

    Article  Google Scholar 

  16. Liao, C., Jin, Y., Li, Y., Tjong, S.C.: Interactions of zinc oxide nanostructures with mammalian cells: cytotoxicity and photocatalytic toxicity. Int. J. Mol. Sci. 21, 6305 (2020). https://doi.org/10.3390/ijms21176305

    Article  Google Scholar 

  17. Rata, D.M., Cadinoiu, A.N., Daraba, O.M., Gradinaru, L.M., Atanase, L.I., Ichim, D.L.: Influence of ZnO nanoparticles on the properties of ibuprofen-loaded alginate-based biocomposite hydrogels with potential antimicrobial and anti-inflammatory effects. Pharmaceutics. 15, 2240 (2023). https://doi.org/10.3390/pharmaceutics15092240

    Article  Google Scholar 

  18. Punitha, V.N., Vijayakumar, S., Vidhya, E., Amirthanathan, A., Mythili, R., Devanesan, S., AlSalhi, M.S., Kim, W.: Biowaste valorization based ZnO nanoparticles as vital component for multifaceted applications: a green approach. Waste and Biomass Valorization. (2023). https://doi.org/10.1007/s12649-023-02312-3

    Article  Google Scholar 

  19. Vieira, I.R.S., da Silva, A.A., da Silva, B.D., Neto, L.T., Tessaro, L., Furtado, C.R.G., de Sousa, A.M.F., Carvalho, N.M.F., Conte-Junior, C.A.: Eco-friendly synthesis of ZnO nanomaterial from green tea extract: photocatalytic, antibacterial and antioxidant potential. Biomass Convers. Biorefinery. 1, 1–15 (2023). https://doi.org/10.1007/s13399-023-04456-7

    Article  Google Scholar 

  20. Wen, Z., Shi, X., Li, X., Liu, W., Liu, Y., Zhang, R., Yu, Y., Su, J.: Mesoporous TiO2 coatings regulate ZnO nanoparticle loading and Zn2+ release on titanium dental implants for sustained osteogenic and antibacterial activity. ACS Appl. Mater. Interfaces 15, 15235–15249 (2023). https://doi.org/10.1021/acsami.3c00812

    Article  Google Scholar 

  21. Geremew, A., Carson, L., Woldesenbet, S., Wang, H., Reeves, S., Brooks, N., Saganti, P., Weerasooriya, A., Peace, E.: Effect of zinc oxide nanoparticles synthesized from Carya illinoinensis leaf extract on growth and antioxidant properties of mustard (Brassica juncea). Front. Plant Sci. 14, 1108186 (2023). https://doi.org/10.3389/fpls.2023.1108186

    Article  Google Scholar 

  22. Shochah, Q.R., Jabir, F.A.: Green synthesis of Au/ZnO nanoparticles for anticancer activity and oxidative stress against MCF-7 cell lines. Biomass Convers. Biorefinery. 1, 1–14 (2023). https://doi.org/10.1007/s13399-022-03697-2

    Article  Google Scholar 

  23. Pei, X., Jiang, H., Li, C., Li, D., Tang, S.: Oxidative stress-related canonical pyroptosis pathway, as a target of liver toxicity triggered by zinc oxide nanoparticles. J. Hazard. Mater. 442, 130039 (2023). https://doi.org/10.1016/j.jhazmat.2022.130039

    Article  Google Scholar 

  24. Corsi, I., Venditti, I., Trotta, F., Punta, C.: Environmental safety of nanotechnologies: the eco-design of manufactured nanomaterials for environmental remediation. Sci. Total. Environ. 864, 161181 (2023). https://doi.org/10.1016/j.scitotenv.2022.161181

    Article  Google Scholar 

  25. Lima, A.K.O., Silveira, A.P., Silva, R.C., Machado, Y.A.A., de Araújo, A.R., de Mendonça Araujo, S.S., Vieira, I.R.S., Araújo, J.L., dos Santos, L.C., da França Rodrigues, K.A., da Silva, S.W., de Aquino Ribeiro, J.A., Rodrigues, C.M., Garcia, M.P.: Phytosynthesis of silver nanoparticles using guarana (Paullinia cupana Kunth) leaf extract employing different routes: characterization and investigation of in vitro bioactivities. Biomass Convers. Biorefinery. (2024). https://doi.org/10.1007/s13399-023-05250-1

  26. Gupta, D., Boora, A., Thakur, A., Gupta, T.K.: Green and sustainable synthesis of nanomaterials: recent advancements and limitations. Environ. Res. 231, 116316 (2023). https://doi.org/10.1016/j.envres.2023.116316

    Article  Google Scholar 

  27. Awasthi, G., Maheshwari, T., Sharma, R., Kumawat, T.K., Singh, G.P., Lodha, P.: Actions and reactions of plants derived zinc-oxide nano-particles. Mater. Today Proc. (2023). https://doi.org/10.1016/J.MATPR.2023.08.157

    Article  Google Scholar 

  28. Khan, A.U., Malik, N., Singh, B., Ansari, N.H., Rehman, M., Yadav, A.: Biosynthesis, and characterization of zinc oxide nanoparticles (ZnONPs) obtained from the extract of waste of strawberry. J. Umm Al-Qura Univ. Appl. Sci. 9, 268–275 (2023). https://doi.org/10.1007/S43994-023-00038-5

    Article  Google Scholar 

  29. Hussien, N.A.: Antimicrobial potential of biosynthesized zinc oxide nanoparticles using banana peel and date seeds extracts. Sustain. 15, 9048 (2023). https://doi.org/10.3390/su15119048

    Article  Google Scholar 

  30. Kaur, N.: An innovative outlook on utilization of agro waste in fabrication of functional nanoparticles for industrial and biological applications: a review. Talanta 267, 125114 (2024). https://doi.org/10.1016/j.talanta.2023.125114

    Article  Google Scholar 

  31. Chaudhary, S., Jain, V.P., Sharma, D., Jaiswar, G.: Implementation of agriculture waste for the synthesis of metal oxide nanoparticles: its management, future opportunities and challenges. J. Mater. Cycles Waste Manag. (2023). https://doi.org/10.1007/s10163-023-01770-0

    Article  Google Scholar 

  32. Nobre, J.R.C., Queiroz, L.S., Castro, J.P., Pego, M.F.F., Hugen, L.N., Costa, C.E.F. da, Pardauil, J. de J.R., Nascimento, L.A.S. do, Rocha Filho, G.N. da, Zamian, J.R., Souza, E.C. de, Bianchi, M.L.: Potential of agro-industrial residues from the Amazon region to produce activated carbon. Heliyon. (2023). https://doi.org/10.1016/j.heliyon.2023.e17189

  33. da Silveira, J.T., da Rosa, A.P.C., de Morais, M.G., Victoria, F.N., Costa, J.A.V.: An integrative review of Açaí (Euterpe oleracea and Euterpe precatoria): traditional uses, phytochemical composition, market trends, and emerging applications. Food Res. Int. 173, 113304 (2023). https://doi.org/10.1016/j.foodres.2023.113304

    Article  Google Scholar 

  34. Schauss, A.G.: Advances in the study of the health benefits and mechanisms of action of the pulp and seed of the Amazonian palm fruit, Euterpe oleracea Mart., known as “Açai.” Fruits, Veg. Herbs Bioact. Foods Heal. Promot. (2016). https://doi.org/10.1016/b978-0-12-802972-5.00010-x

  35. Alessandra-Perini, J., Rodrigues-Baptista, K.C., Machado, D.E., Nasciutti, L.E., Perini, J.A., Rodrigues-Baptista, A.-P.J., De, M., Le, N., Ja, P.: Anticancer potential, molecular mechanisms and toxicity of Euterpe oleracea extract (açaí): a systematic review. PLoS ONE 13, e0200101 (2018). https://doi.org/10.1371/journal.pone.0200101

    Article  Google Scholar 

  36. Laurindo, L.F., Barbalho, S.M., Araújo, A.C., Guiguer, E.L., Mondal, A., Bachtel, G., Bishayee, A.: Açaí (Euterpe oleracea Mart.) in health and disease: a critical review. Nutrients. 15, 989 (2023). https://doi.org/10.3390/nu15040989/S1

  37. Melo, P.S., Selani, M.M., Gonçalves, R.H., Paulino, J. de O., Massarioli, A.P., Alencar, S.M. de: Açaí seeds: an unexplored agro-industrial residue as a potential source of lipids, fibers, and antioxidant phenolic compounds. Ind. Crops Prod. 161, 113204 (2021). https://doi.org/10.1016/j.indcrop.2020.113204

  38. Melo, P.S., Massarioli, A.P., Lazarini, J.G., Soares, J.C., Franchin, M., Rosalen, P.L., de Alencar, S.M.: Simulated gastrointestinal digestion of Brazilian açaí seeds affects the content of flavan-3-ol derivatives, and their antioxidant and anti-inflammatory activities. Heliyon. 6, e05214 (2020). https://doi.org/10.1016/j.heliyon.2020.E05214

    Article  Google Scholar 

  39. Klinbumrung, A., Panya, R., Pung-Ngama, A., Nasomjai, P., Saowalakmeka, J., Sirirak, R.: Green synthesis of ZnO nanoparticles by pineapple peel extract from various alkali sources. J. Asian Ceram. Soc. 10, 755–765 (2022). https://doi.org/10.1080/21870764.2022.2127504

    Article  Google Scholar 

  40. Abdelmigid, H.M., Hussien, N.A., Alyamani, A.A., Morsi, M.M., Alsufyani, N.M., Kadi, H.A.: Green synthesis of zinc oxide nanoparticles using pomegranate fruit peel and solid coffee grounds vs. chemical method of synthesis, with their biocompatibility and antibacterial properties investigation. Molecules 27, 1236 (2022). https://doi.org/10.3390/molecules27041236

    Article  Google Scholar 

  41. Jiménez-Rosado, M., Gomez-Zavaglia, A., Guerrero, A., Romero, A.: Green synthesis of ZnO nanoparticles using polyphenol extracts from pepper waste (Capsicum annuum). J. Clean. Prod. 350, 131541 (2022). https://doi.org/10.1016/j.jclepro.2022.131541

    Article  Google Scholar 

  42. Shabaani, M., Rahaiee, S., Zare, M., Jafari, S.M.: Green synthesis of ZnO nanoparticles using loquat seed extract; biological functions and photocatalytic degradation properties. LWT 134, 110133 (2020). https://doi.org/10.1016/j.lwt.2020.110133

    Article  Google Scholar 

  43. Singleton, V.L., Orthofer, R., Lamuela-Raventós, R.M.: Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299, 152–178 (1999). https://doi.org/10.1016/S0076-6879(99)99017-1

    Article  Google Scholar 

  44. Brand-Williams, W., Cuvelier, M.E., Berset, C.: Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 28, 25–30 (1995). https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  Google Scholar 

  45. Benzie, I.F.F., Strain, J.J.: The Ferric Reducing Ability of Plasma (FRAP) as a measure of “Antioxidant Power”: the FRAP Assay. Anal. Biochem. 239, 70–76 (1996). https://doi.org/10.1006/abio.1996.0292

    Article  Google Scholar 

  46. CLSI: M100 | Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute Document; CLSI: Wayne, PA, USA, 2006., https://clsi.org/standards/products/microbiology/documents/m100/

  47. Wiegand, I., Hilpert, K., Hancock, R.E.W.: Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3, 163–175 (2008). https://doi.org/10.1038/nprot.2007.521

    Article  Google Scholar 

  48. Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983). https://doi.org/10.1016/0022-1759(83)90303-4

    Article  Google Scholar 

  49. Da Silva, M., Costa, J., Pacheco-Fill, T., Ruiz, A., Vidal, F., Borges, K., Guimarães, S., Azevedo-Santos, A., Buglio, K., Foglio, M., Barbosa, M., Nascimento, M., Carvalho, J.: Açai (Euterpe oleracea Mart.) seed extract induces ROS production and cell death in MCF-7 breast cancer cell line. Molecules 26, 3546 (2021). https://doi.org/10.3390/molecules26123546

    Article  Google Scholar 

  50. De Souza, A.P.N., Sánchez, D.R., Alzamora, M., Colaço, M.V., de Souza, M.A.V., De Gois, J.S., Senra, J.D., Carvalho, N.M.F.: Outstanding adsorption capacity of iron oxide synthesized with extract of açaí berry residue: kinetic, isotherm, and thermodynamic study for dye removal. Environ. Sci. Pollut. Res. 30, 109423–109437 (2023). https://doi.org/10.1007/s11356-023-29872-0

    Article  Google Scholar 

  51. Garzón, G.A., Narváez-Cuenca, C.E., Vincken, J.P., Gruppen, H.: Polyphenolic composition and antioxidant activity of açai (Euterpe oleracea Mart.) from Colombia. Food Chem. 217, 364–372 (2017). https://doi.org/10.1016/j.foodchem.2016.08.107

    Article  Google Scholar 

  52. Machado, A.K., Andreazza, A.C., Da Silva, T.M., Boligon, A.A., Do Nascimento, V., Scola, G., Duong, A., Cadoná, F.C., Ribeiro, E.E., Da Cruz, I.B.M.: Neuroprotective effects of Açaí (Euterpe oleracea Mart.) against rotenone in vitro exposure. Oxid. Med. Cell. Longev. (2016). https://doi.org/10.1155/2016/8940850

  53. Pacheco-Palencia, L.A., Duncan, C.E., Talcott, S.T.: Phytochemical composition and thermal stability of two commercial açai species, Euterpe oleracea and Euterpe precatoria. Food Chem. 115, 1199–1205 (2009). https://doi.org/10.1016/j.foodchem.2009.01.034

    Article  Google Scholar 

  54. Martins, G.R., Mattos, M.M.G., Nascimento, F.M., Brum, F.L., Mohana-Borges, R., Figueiredo, N.G., Neto, D.F.M., Domont, G.B., Nogueira, F.C.S., De Paiva Campos, F.D.A., Sant’Ana Da Silva, A.: Phenolic profile and antioxidant properties in extracts of developing Açaí (Euterpe oleracea Mart.) Seeds. J. Agric. Food Chem. 70, 16218–16228 (2022). https://doi.org/10.1021/acs.jafc.2c07028

  55. MuthuKathija, M., Sheik Muhideen Badhusha, M., Rama, V.: Green synthesis of zinc oxide nanoparticles using Pisonia Alba leaf extract and its antibacterial activity. Appl. Surf. Sci. Adv. 15, 100400 (2023). https://doi.org/10.1016/j.apsadv.2023.100400

  56. Omran, A.M.E.: Characterization of green route synthesized zinc oxide nanoparticles using Cyperus rotundus rhizome extract: antioxidant, antibacterial, anticancer and photocatalytic potential. J. Drug Deliv. Sci. Technol. 79, 104000 (2023). https://doi.org/10.1016/j.jddst.2022.104000

    Article  Google Scholar 

  57. Buratto, R.T., Chinchilla, M.I., Cocero, M.J., Martín, Á.: Formulation of açaí (E. oleracea Mart.) Pulp and seeds extracts by co-precipitation in Supercritical Antisolvent (SAS) technology. J. Supercrit. Fluids (2021). https://doi.org/10.1016/j.supflu.2020.105090

  58. Tavares, F.F.D.C., De Almeida, M.D.C., da Silva, J.A.P., Araújo, L.L., Cardozo, N.S.M., Santana, R.M.C.: Thermal treatment of açaí (Euterpe oleracea) fiber for composite reinforcement. Polimeros. (2020). https://doi.org/10.1590/0104-1428.09819

    Article  Google Scholar 

  59. Azevedo, A., De Matos, P., Marvila, M., Sakata, R., Silvestro, L., Gleize, P., De Brito, J.: Rheology, hydration, and microstructure of portland cement pastes produced with ground açaí fibers. Appl. Sci. (2021). https://doi.org/10.3390/app11073036

    Article  Google Scholar 

  60. Ribeiro, H., Assis, C.D., Lafourcade, A., Otávio, J., Silva, C., Brito, M., Sousa, D., Maciel, A., Rafael, J., Amado, R., Oliveira, H.D., Victor, A., Lima, T.D., Carlos, J., Carvalho, T.: Obtaining and characterization of anthocyanins from Euterpe oleracea (açaí) dry extract for nutraceutical and food preparations. Rev. Bras. Farmacogn. 29, 677–685 (2019). https://doi.org/10.1016/j.bjp.2019.03.004

    Article  Google Scholar 

  61. Manojkumar, U., Kaliannan, D., Srinivasan, V., Balasubramanian, B., Kamyab, H., Mussa, Z.H., Palaniyappan, J., Mesbah, M., Chelliapan, S., Palaninaicker, S.: Green synthesis of zinc oxide nanoparticles using Brassica oleracea var. botrytis leaf extract: photocatalytic, antimicrobial and larvicidal activity. Chemosphere 323, 138263 (2023). https://doi.org/10.1016/j.chemosphere.2023.138263

    Article  Google Scholar 

  62. Winiarski, J., Tylus, W., Winiarska, K., Szczygieł, I., Szczygieł, B.: XPS and FT-IR characterization of selected synthetic corrosion products of zinc expected in neutral environment containing chloride ions. J. Spectrosc. (2018). https://doi.org/10.1155/2018/2079278

    Article  Google Scholar 

  63. Saif, S., Tahir, A., Asim, T., Chen, Y., Khan, M., Adil, S.F.: Green synthesis of ZnO hierarchical microstructures by Cordia myxa and their antibacterial activity. Saudi J. Biol. Sci. 26, 1364–1371 (2019). https://doi.org/10.1016/j.sjbs.2019.01.004

    Article  Google Scholar 

  64. Dey, A., Somaiah, S.: Green synthesis and characterization of zinc oxide nanoparticles using leaf extract of Thryallis glauca (Cav.) Kuntze and their role as antioxidant and antibacterial. Microsc. Res. Tech. 85, 2835–2847 (2022). https://doi.org/10.1002/jemt.24132

    Article  Google Scholar 

  65. Pillai, A.M., Sivasankarapillai, V.S., Rahdar, A., Joseph, J., Sadeghfar, F., Anuf A, R., Rajesh, K., Kyzas, G.Z.: Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J. Mol. Struct. 1211, 128107 (2020). https://doi.org/10.1016/j.molstruc.2020.128107

  66. Timakwe, S., Silwana, B., Matoetoe, M.C.: Electrochemistry as a complementary technique for revealing the influence of reducing agent concentration on AgNPs. ACS Omega 7, 4921–4931 (2022). https://doi.org/10.1021/acsomega.1c05374

    Article  Google Scholar 

  67. Saleh, T.A.: Trends in the sample preparation and analysis of nanomaterials as environmental contaminants. Trends Environ. Anal. Chem. 28, 1–10 (2020). https://doi.org/10.1016/j.teac.2020.e00101

    Article  Google Scholar 

  68. Jayappa, M.D., Ramaiah, C.K., Kumar, M.A.P., Suresh, D., Prabhu, A., Devasya, R.P., Sheikh, S.: Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L.: characterization and their applications. Appl. Nanosci. 10, 3057–3074 (2020). https://doi.org/10.1007/s13204-020-01382-2

    Article  Google Scholar 

  69. Vieira, I.R.S., Silva, A.C.L.N., Castro, N.R., Pinto, C. dos S.C., de Freitas, Z.M.F., Ricci-Júnior, E., Dos Santos, E.P., Camara, A.L., Costa, M.C.P., Conte-Junior, C.A.: Development and characterization of photoprotective nanoemulsions containing Babassu (Orbignya phalerata Mart.) lipophilic extract. Braz. J. Pharm. Sci. 59, 1–17 (2023). https://doi.org/10.1590/s2175-97902023e23011

  70. Singh, T.A., Sharma, A., Tejwan, N., Ghosh, N., Das, J., Sil, P.C.: A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Adv. Colloid Interface Sci. 295, 102495 (2021). https://doi.org/10.1016/j.cis.2021.102495

    Article  Google Scholar 

  71. Lal, S., Verma, R., Chauhan, A., Dhatwalia, J., Guleria, I., Ghotekar, S., Thakur, S., Mansi, K., Kumar, R., Kumari, A., Kumar, P.: Antioxidant, antimicrobial, and photocatalytic activity of green synthesized ZnO-NPs from Myrica esculenta fruits extract. Inorg. Chem. Commun. 141, 109518 (2022). https://doi.org/10.1016/j.inoche.2022.109518

    Article  Google Scholar 

  72. Sasi, S., Fathima Fasna, P.H., Bindu Sharmila, T.K., Julie Chandra, C.S., Antony, J.V., Raman, V., Nair, A.B., Ramanathan, H.N.: Green synthesis of ZnO nanoparticles with enhanced photocatalytic and antibacterial activity. J. Alloys Compd. 924, 166431 (2022). https://doi.org/10.1016/j.jallcom.2022.166431

    Article  Google Scholar 

  73. Perveen, R., Shujaat, S., Qureshi, Z., Nawaz, S., Khan, M.I., Iqbal, M.: Green versus sol-gel synthesis of ZnO nanoparticles and antimicrobial activity evaluation against panel of pathogens. J. Mater. Res. Technol. 9, 7817–7827 (2020). https://doi.org/10.1016/j.jmrt.2020.05.004

    Article  Google Scholar 

  74. Karthik, S., Siva, P., Balu, K.S., Suriyaprabha, R., Rajendran, V., Maaza, M.: Acalypha indica–mediated green synthesis of ZnO nanostructures under differential thermal treatment: effect on textile coating, hydrophobicity, UV resistance, and antibacterial activity. Adv. Powder Technol. 28, 3184–3194 (2017). https://doi.org/10.1016/j.apt.2017.09.033

    Article  Google Scholar 

  75. Jaithon, T., Ruangtong, J., Thienprasert, J., Thienprasert, N.P.: Effects of waste-derived ZnO nanoparticles against growth of plant pathogenic bacteria and epidermoid carcinoma cells. Crystals 12, 779 (2022). https://doi.org/10.3390/cryst12060779

    Article  Google Scholar 

  76. Jevapatarakul, D., Thienprasert, J., Payungporn, S., Chavalit, T., Khamwut, A., Thienprasert, N.P.: Utilization of Cratoxylum formosum crude extract for synthesis of ZnO nanosheets: characterization, biological activities and effects on gene expression of nonmelanoma skin cancer cell. Biomed. Pharmacother. 130, 110552 (2020). https://doi.org/10.1016/j.biopha.2020.110552

    Article  Google Scholar 

  77. González, S.C.E., Bolaina-Lorenzo, E., Pérez-Trujillo, J.J., Puente-Urbina, B.A., Rodríguez-Fernández, O., Fonseca-García, A., Betancourt-Galindo, R.: Antibacterial and anticancer activity of ZnO with different morphologies: a comparative study. 3 Biotech. 11, 1–12 (2021). https://doi.org/10.1007/s13205-020-02611-9

    Article  Google Scholar 

  78. Tanino, R., Amano, Y., Tong, X., Sun, R., Tsubata, Y., Harada, M., Fujita, Y., Isobe, T.: Anticancer activity of ZnO nanoparticles against human small-cell lung cancer in an orthotopic mouse model. Mol. Cancer Ther. 19, 502–512 (2020). https://doi.org/10.1158/1535-7163.mct-19-0018

    Article  Google Scholar 

  79. Motazedi, R., Rahaiee, S., Zare, M.: Efficient biogenesis of ZnO nanoparticles using extracellular extract of Saccharomyces cerevisiae: evaluation of photocatalytic, cytotoxic and other biological activities. Bioorg. Chem. 101, 103998 (2020). https://doi.org/10.1016/j.bioorg.2020.103998

    Article  Google Scholar 

  80. Arooj, S., Nazir, S., Nadhman, A., Ahmad, N., Muhammad, B., Ahmad, I., Mazhar, K., Abbasi, R.: Novel ZnO: Ag nanocomposites induce significant oxidative stress in human fibroblast malignant melanoma (Ht144) cells. Beilstein J. Nanotechnol. 6, 570–582 (2015). https://doi.org/10.3762/bjnano.6.59

    Article  Google Scholar 

  81. Akhtar, M.J., Ahamed, M., Kumar, S., Majeed Khan, M.A., Ahmad, J., Alrokayan, S.A.: Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int. J. Nanomed. 7, 845–857 (2012). https://doi.org/10.2147/ijn.S29129

    Article  Google Scholar 

Download references

Funding

This work was supported by the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) Brazil — Grant Numbers [E-26/204.254/2021; E-26/204.255/2021; E-26/200.891/2021; E-26/202.800/2023; E-26/200.416/2023; E-26/010.002171/2019; and E-26/202.690/2023]; the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Brazil — Grant Numbers [313119/2020-1; 316550/2021-3; 402215/2022-2; and 200468/2022-7]; and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Brazil — FinanceCode001.

Author information

Authors and Affiliations

Authors

Contributions

Italo Rennan Sousa Vieira: Conceptualization, methodology, investigation, data curation, writing—original draft, writing—review & editing, project administration. Arianne Aparecida da Silva, Bruno Dutra da Silva, Luiz Torres Neto, Leticia Tessaro, Alan Kelbis Oliveira Lima, and José Antônio de Aquino Ribeiro: Methodology, data curation, writing—review & editing. Mônica Pereira Garcia, Clenilson Martins Rodrigues, Ana Maria Furtado de Sousa, Nakédia M. F. Carvalho, and Andreja Rajkovic: Writing—review & editing. Carlos Adam Conte-Junior: Writing—review & editing, supervision, project administration, funding acquisition. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Italo Rennan Sousa Vieira.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 144 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, I.R.S., da Silva, A.A., da Silva, B.D. et al. Antioxidant, Antimicrobial, and Anticancer Potential of Green Synthesized ZnO Nanoparticles from Açaí (Euterpe oleracea Mart.) Berry Seed Residue Extract. Waste Biomass Valor (2024). https://doi.org/10.1007/s12649-024-02485-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-024-02485-5

Keywords

Navigation