Skip to main content
Log in

Valorization of Malaysian Fish Sausage (Keropok Lekor) By-Products into Bioactive Fish Protein Hydrolysate by Bacillus licheniformis Fermentation: Influence of By-Products Characteristics on Nutritional, Antioxidant, and Antibacterial Capacities

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The Malaysian fish sausage industry, Keropok Lekor (KL), generates large amounts of by-products (FBs), that are underutilised and inappropriately disposed of, resulting in negative environmental implications. This study aimed to transform the FBs into bioactive fish protein hydrolysate (FPH) via the Bacillus licheniformis fermentative approach. Besides the various FBs and strain type used, this study was significant for its detailed analysis exploring the effect of the FB’s nutritional and amino acid (AA) contents on antioxidant and antibacterial activities, as well as the nutritional qualities of the FPHs. The B. licheniformis fermentation improved the FBs nutritional quality by increasing protein digestibility and essential AA content. The highest degree of hydrolysis (DH) was linked to soluble protein concentration, and there was a significant correlation (R2 = 0.9) between the DH and protein yields in the samples. The FPHs demonstrated stronger DPPH (32.5–58.4%) and ABTS (74.8–90.1%) antiradical activities and ferrous chelating activity (25.3–59.9%) than that of the FBs (p < 0.05), resulting from B. licheniformis metabolism that impacted on the generation of a higher content of hydrophobic and polar AAs. The fraction 3–10 kDa exhibited the highest peptide concentration and antioxidant activity due to the synergistic interactions between peptides with different molecular weights. However, all FPHs showed no significant (p > 0.05) difference in growth inhibition against all tested pathogens compared to their FBs. Hence, KL FBs valorisation into high-value products like bioactive FPH by microbial fermentation serves as a green strategy to improve waste management and advocate a circular and sustainable bioeconomy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The corresponding author can provide the data supporting the research findings upon request. Restrictions prevent the data from being made publicly available, such as the fact that they contain information that would compromise research participants’ privacy.

References

  1. FAO: The State of World Fisheries and Aquaculture 2020Food and Agriculture Organization Sustainability in action, Rome (2020). https://doi.org/10.4060/ca9229en

  2. Rosidi, W.N.A.T.M., Arshad, N.M., Mohtar, N.F.: Characterization of Sardinella fimbriata and Clarias gariepinus bones. Biodivers. 22, 1621–1626 (2021). https://doi.org/10.13057/biodiv/d220405

    Article  Google Scholar 

  3. Rasli, H.I., Sarbon, N.M.: Optimization of enzymatic hydrolysis conditions and characterization of Shortfin scad (Decapterus Macrosoma) skin gelatin hydrolysate using response surface methodology. Int. Food Res. J. 25(4), 1541–1549 (2018)

    Google Scholar 

  4. Rozaini, M.Z.H., Hamzah, H., Mohtar, N.F.M., Razali, M.H., Osman, U.M., Anuar, S.T., CheSoh, S.K., Ghazali, S.R., Ibrahim, N.H., Fei, L.C., Rahmah, S.: Calcium hydroxyapatite-based marine origin: novel sunscreen materials for cosmeceutical treatments. Orient. J. Chem. 34(6), 2270–2276 (2018). https://doi.org/10.13005/ojc/340612

    Article  Google Scholar 

  5. Murthy, L.N., Phadke, G.G., Unnikrishnan, P., Annamalai, J., Joshy, C.G., Zynudheen, A.A., Ravishankar, C.N.: Valorization of fish viscera for crude proteases production and its use in bioactive protein hydrolysate preparation. Waste Biomass Valor. 9, 1735–1746 (2018). https://doi.org/10.1007/s12649-017-9962-5

    Article  Google Scholar 

  6. Venkatesan, J., Anil, S., Kim, S.K., Shim, M.S.: Marine fish proteins and peptides for cosmeceuticals: a review. Mar. Drugs 15, 143 (2017). https://doi.org/10.3390/md15050143

    Article  Google Scholar 

  7. Tadesse, S.A., Emire, S.A.: Production and processing of antioxidant bioactive peptides: a driving force for the functional food market. Heliyon 6, e04765 (2020). https://doi.org/10.1016/j.heliyon.2020.e04765

    Article  Google Scholar 

  8. Kuang, C.Y., Mohtar, N.F.: Effects of different soaking time on the extraction of gelatine from shortfin scad (Decapterus macrosoma) heads. J. Environ. Biol. 39, 888–894 (2018). https://doi.org/10.22438/jeb/39/5(SI)/11

    Article  Google Scholar 

  9. Ishak, N.H., Sarbon, N.M.: Physicochemical characterization of enzymatically prepared fish protein hydrolysate from waste of shortfin scad (Decapterus macrosoma). Int. Food Res. J. 25(6), 2593–2600 (2018)

    Google Scholar 

  10. Hamdan, F.S., Sarbon, N.M.: Isolation and characterization of collagen from fringescale sardinella (Sardinella fimbriata) waste materials. Int. Food Res. J. 26(1), 133–140 (2019)

    Google Scholar 

  11. Hou, Y., Wu, Z., Dai, Z., Wang, G., Wu, G.: Protein hydrolysates in animal nutrition: industrial production, bioactive peptides, and functional significance. J. Anim. Sci. Biotechnol. 8, 24 (2017). https://doi.org/10.1186/s40104-017-0153-9

    Article  Google Scholar 

  12. Cruz-Casas, D.E., Aguilar, C.N., Ascacio-Valdes, J.A., Rodríguez-Herrera, R., Chavez-Gonzalez, M.L., Flores-Gallegos, A.C.: Enzymatic hydrolysis and microbial fermentation: the most favorable biotechnological methods for the release of bioactive peptides. Food Chem: Mol. Sci. 3, 100047 (2021). https://doi.org/10.1016/j.fochms.2021.100047

    Article  Google Scholar 

  13. Hafeez, Z., Cakir-Kiefer, C., Roux, E., Perrin, C., Miclo, L., Dary-Mourot, A.: Strategies of producing bioactive peptides from milk proteins to functionalize fermented milk products. Food Res. Int. 63, 71–80 (2014). https://doi.org/10.1016/j.foodres.2014.06.002

    Article  Google Scholar 

  14. Rashid, N.Y., Abdul Manan, M., Paee, K.F., Saari, N., Faizal Wong, F.W.: Evaluation of antioxidant and antibacterial activities of fish protein hydrolysate produced from Malaysian fish sausage (Keropok Lekor) by-products by indigenous Lactobacillus casei fermentation. J. Clean. Prod. (2022). https://doi.org/10.1016/j.jclepro.2022.131303

    Article  Google Scholar 

  15. Raveschot, C., Cudennec, B., Coutte, F., Flahaut, C., Fremont, M., Drider, D., Dhulster, P.: Production of bioactive peptides by lactobacillus species: from gene to application. Front. Microbiol. (2018). https://doi.org/10.3389/fmicb.2018.02354

    Article  Google Scholar 

  16. Danilova, I., Sharipova, M.: The practical potential of bacilli and their enzymes for industrial production. Front. Microbiol. 4(11), 1782 (2020). https://doi.org/10.3389/fmicb.2020.01782

    Article  Google Scholar 

  17. Jemil, I., Nasri, M.J.R., Ktari, N., Ben Salem, R.B.S., Mehiri, M., Hajji, M., Nasri, M.: Functional, antioxidant, and antibacterial properties of protein hydrolysates prepared from fish meat fermented by Bacillus subtilis A26. Process Biochem. (2014). https://doi.org/10.1016/j.procbio.2014.03.004

    Article  Google Scholar 

  18. Godinho, I., Pires, C., Pedro, S., Teixeira, B., Mendes, R., Nunes, M.L., Batista, I.: Antioxidant properties of fish protein hydrolysates prepared from Cod protein hydrolysate by Bacillus sp. Appl. Biochem. Biotechnol. 178, 1095–1112 (2016). https://doi.org/10.1007/s12010-015-1931-5

    Article  Google Scholar 

  19. Vijayan, H., Joseph, I., Raj, R.P.: Biotransformation of tuna waste by co-fermentation into an aquafeed ingredient. Aquac. Res. 40, 1047–1053 (2009). https://doi.org/10.1111/j.1365-2109.2009.02197.x

    Article  Google Scholar 

  20. AOAC: Official method of Analysis, 18th ed., Association of Official Analytical Chemists, Washington, DC (2005)

  21. Danial, A.M., Peng, K.S., Long, K.: Enrichment of mung bean with L-DOPA, GABA, and essential amino acids via controlled bio-fermentation strategy. Int. J. Biotechnol. Wellness Ind. 4, 114–122 (2015). https://doi.org/10.6000/1927-3037.2015.04.04.2

    Article  Google Scholar 

  22. Bradford, M.M.: A rapid sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye Binding. Anal. Biochem. 72, 248–254 (1976). https://doi.org/10.1006/abio.1976.9999

    Article  Google Scholar 

  23. Hoyle, N.T., Merritt, J.H.: Quality of fish protein hydrolysates from herring (Clupea harengus). J. Food Sci. 59, 76–79 (1994). https://doi.org/10.1111/j.1365-2621.1994.tb06901.x

    Article  Google Scholar 

  24. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951). https://doi.org/10.1016/S0021-9258(19)52451-6

    Article  Google Scholar 

  25. Thaipong, K., Boonprakoba, U., Crosby, K., Cisneros-Zevallosc, L., Byrnec, D.H.: Comparisons of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compost. Anal. 19, 669–675 (2006). https://doi.org/10.1016/j.jfca.2006.01.003

    Article  Google Scholar 

  26. Turoli, D., Testolin, G., Zanini, R., Bellù, R.: Determination of oxidative status in breast and formula milk. Acta Pediatr. 93, 1569–1574 (2004). https://doi.org/10.1080/08035250410022495

    Article  Google Scholar 

  27. Zhu, C.Z., Zhang, W.G., Zhou, G.H., Xu, X.L., Kang, Z.L., Yin, Y.: Isolation and identification of antioxidant peptides from Jinhua ham. J. Agric. Food Chem. 61(6), 1265–1271 (2013). https://doi.org/10.1021/jf3044764

    Article  Google Scholar 

  28. Aguilar-Toala, J., Santiago-Lopez, E., Peres, L., Peres, C.M., Garcia, C., Vallejo-Cordoba, H.S., González-Córdova, B., Hernández-Mendoza, A.A.F.: Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. J. Dairy Sci. 100, 65–75 (2017). https://doi.org/10.3168/jds.2016-11846

    Article  Google Scholar 

  29. Kandyliari, A., Mallouchos, A., Papandroulakis, N., Golla, J.P., Lam, T.T., Sakellari, A., Karavoltsos, S., Vasiliou, V., Kapsokefalou, M.: Nutrient composition and fatty acid and protein profiles of selected fish by-products. Foods 9, 190–199 (2020). https://doi.org/10.3390/foods9020190

    Article  Google Scholar 

  30. Vidotti, R.M., Viegas, E.M.M., Carneiro, D.J.: Amino acid composition of processed fish silage using different raw materials. Anim. Feed Sci. Technol. 105, 199–204 (2003). https://doi.org/10.1016/S0377-8401(03)00056-7

    Article  Google Scholar 

  31. Wu, T.H., Nigg, J.D., Stines, J.J., Bechtel, P.J.: Nutritional and chemical composition of by-product fractions produced from wet reduction of individual red salmon (Oncorhynchus nerka) heads and viscera. J. Aqua. Food Prod. Techno. 20, 183–195 (2011). https://doi.org/10.1080/10498850.2011.557524

    Article  Google Scholar 

  32. An, B., Park, M.K., Oh, J.H.: Food waste treatment using Bacillus species isolated from food wastes and production of air-dried Bacillus cell starters. Environ. Eng. Res. 23(3), 258–264 (2018). https://doi.org/10.4491/eer.2017.116

    Article  Google Scholar 

  33. Chu, I.M., Lee, C., Li, T.S.: Production and degradation of alkaline protease in batch cultures of Bacillus subtilis ATCC 14416. Enzyme Microb. Technol. 14, 55–61 (1992). https://doi.org/10.1016/0141-0229(92)90116-6

    Article  Google Scholar 

  34. Sharma, R., Garg, P., Kumar, P., Bhatia, S.K., Kulshrestha, S.: Microbial fermentation and its role in quality improvement of fermented foods. Fermentation 6, 106 (2020). https://doi.org/10.3390/fermentation6040106

    Article  Google Scholar 

  35. Kårlund, A., Gómez-Gallego, C., Korhonen, J., Palo-oja, O.M., El-Nezami, H., Kolehmainen, M.: Harnessing microbes for sustainable development: Food fermentation as a tool for improving the nutritional quality of alternative protein sources. Nutrients 12, 1020 (2020). https://doi.org/10.3390/nu12041020

    Article  Google Scholar 

  36. Neis, E., Dejong, C., Rensen, S.: The Role of microbial amino acid metabolism in host metabolism. Nutrients 7, 2930–2946 (2015). https://doi.org/10.3390/nu7042930

    Article  Google Scholar 

  37. Teng, D., Gao, M., Yang, Y., Liu, B., Tian, Z., Wang, J.: Bio-modification of soybean meal with Bacillus subtilis or Aspergillus oryzae. Biocatal. Agric. Biotechnol. 1, 32–38 (2012). https://doi.org/10.1016/J.BCAB.2011.08.005

    Article  Google Scholar 

  38. Islam, M.S., Hongxin, W., Admassu, H., Noman, A., Ma, C., Wei, F.A.: Degree of hydrolysis, functional and antioxidant properties of protein hydrolysates from Grass Turtle (Chinemys reevesii) as influenced by enzymatic hydrolysis conditions. Food Sci. Nutr. 9, 4031–4047 (2021). https://doi.org/10.1002/fsn3.1903

    Article  Google Scholar 

  39. Thiansilakul, Y., Benjakul, S., Shahidi, F.: Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi). Food Chem. 103, 1385–1394 (2007). https://doi.org/10.1016/j.foodchem.2006.10.055

    Article  Google Scholar 

  40. Lim, Y.Y., Lim, T.T., Tee, J.J.: Antioxidant properties of several tropical fruits: a comparative study. Food Chem. 103, 1003–1008 (2007). https://doi.org/10.1016/j.foodchem.2006.08.038

    Article  Google Scholar 

  41. Felix, M., Romero, A., Rustad, T.: Physicochemical, microstructure and bioactive characterization of gels made from crayfish protein. Food Hydrocoll. 63, 429–436 (2017). https://doi.org/10.1016/j.foodhyd.2016.09.025

    Article  Google Scholar 

  42. Xu, N., Chen, G., Liu, H.: Antioxidative categorization of twenty amino acids based on experimental evaluation. Molecules 22, 2066 (2017). https://doi.org/10.3390/molecules22122066

    Article  Google Scholar 

  43. Petrova, P., Arsov, A., Ivanov, I., Tsigoriyna, L., Petrov, K.: New exopolysaccharides produced by Bacillus licheniformis 24 display substrate-dependent content and antioxidant activity. Microorganisms 9(10), 2127 (2021). https://doi.org/10.3390/microorganisms9102127

    Article  Google Scholar 

  44. Zou, T.B., He, T.P., Li, H.B., Tang, H.W., Xia, E.Q.: The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules 21, 72 (2016). https://doi.org/10.3390/molecules21010072

    Article  Google Scholar 

  45. Khositanon, P., Panya, N., Roytrakul, S., Krobthong, S., Chanroj, S., Choksawangkarn, W.: Effects of fermentation periods on antioxidant and angiotensin I-converting enzyme inhibitory activities of peptides from fish sauce by-products. LWT Food Sci. Technol. (2021). https://doi.org/10.1016/j.lwt.2020.1101

    Article  Google Scholar 

  46. Pezeshk, S., Ojagh, S.M., Rezae, M., Shabanpour, B.: Fractionation of protein hydrolysates of fish waste using membrane ultrafiltration: investigation of antibacterial and antioxidant activities. Probiotic Antimicrob. Proteins 11, 1015–1022 (2019). https://doi.org/10.1007/s12602-018-9483-y

    Article  Google Scholar 

  47. Tkaczewskaa, J., Borawska-Dziadkiewiczb, J., Kulawika, P., Dudaa, I., Morawskac, M., Mickowskad, B.: The effects of hydrolysis condition on the antioxidant activity of protein hydrolysate from Cyprinus carpio skin gelatin. LWT Food Sci. Technol. 117, 108616 (2020). https://doi.org/10.1016/j.lwt.2019.108616

    Article  Google Scholar 

  48. Jiang, H., Tong, T., Sun, J., Xu, Y., Zhao, Z., Liao, D.: Purification and characterization of antioxidative peptides from round scad (Decapterus maruadsi) muscle protein hydrolysate. Food Chem. 1(154), 158–163 (2014). https://doi.org/10.1016/j.foodchem.2013.12.074

    Article  Google Scholar 

  49. Noman, A., Wang, Y., Zhang, C., Yin, L., Abed, S.M.: Fractionation and purification of antioxidant peptides from Chinese sturgeon (Acipenser sinensis) protein hydrolysates prepared using papain and alcalase 2.4L. Arab. J. Chem. 15, 104368 (2022). https://doi.org/10.1016/j.arabjc.2022.104368

    Article  Google Scholar 

  50. Picot, L., Ravallec, R., Fouchereau-Péron, M., Vandanjon, L., Jaouen, P., Chaplain-Derouiniot, M., Guérard, F., Chabeaud, A., Legal, Y., Alvarez, O.M., Bergé, J.P., Piot, J.M., Batista, I., Pires, C., Thorkelsson, G., Delannoy, C., Jakobsen, G., Johansson, I., Bourseau, P.: Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties. J. Sci. Food Agric. 90(11), 1819–1826 (2010). https://doi.org/10.1002/jsfa.4020

    Article  Google Scholar 

  51. Zhuang, H., Ning, T., Yuan, Y.: Purification and identification of antioxidant peptides from corn gluten meal. J. Funct. Foods 5(4), 1810–1821 (2013). https://doi.org/10.1016/j.jff.2013.08.013

    Article  Google Scholar 

  52. Centenaro, G.S., Mellado, M.S., Pires, C., Batista, I., Nunes, M.L., Prentice, C.: Fractionation of protein hydrolysate of fish and chicken using membrane ultrafiltration: investigation of antioxidant activity. Appl. Biochem. Biotechnol. 172, 2877–2893 (2014). https://doi.org/10.1007/s12010-014-0732-6

    Article  Google Scholar 

  53. Guo, H., Kouzuma, Y., Yonekura, M.: Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chem. 113, 238–245 (2009). https://doi.org/10.1016/j.foodchem.2008.06.081

    Article  Google Scholar 

  54. Burkitt, M.J.: A critical overview of the chemistry of copper-dependent low-density lipoprotein oxidation: roles of lipid hydroperoxides, alpha-tocopherol, thiols, and ceruloplasmin. Arch. Biochem. Biophys. 394, 117–135 (2001). https://doi.org/10.1006/abbi.2001.2509

    Article  Google Scholar 

  55. Torres-Fuentes, C., Contreras, M.M., Recio, I., Alaiz, M., Vioque, J.: Identification and characterization of antioxidant peptides from chickpea protein hydrolysates. Food Chem. 180, 194–202 (2015). https://doi.org/10.1016/j.foodchem.2015.02.046

    Article  Google Scholar 

  56. Ingram, G.: Substances involved in the natural resistances of fish to infection. Fish Biol. 16, 23–60 (1980). https://doi.org/10.1111/j.1095-8649.1980.tb03685.x

    Article  Google Scholar 

  57. Hellio, C., Pons, A.M., Beaupoil, C., Bourgougnon, N., Gal, Y.L.: Antibacterial, antifungal and cytotoxic activities of extracts from fish epidermis and epidermal mucus. Int. J. Antimicrob. Agents 20, 214–219 (2002). https://doi.org/10.1016/s0924-8579(02)00172-3

    Article  Google Scholar 

  58. Pescuma, M., Valdez, G.F., Mozzi, F.: Whey-derived valuable products obtained by microbial fermentation. Appl. Microbiol. Biotechnol. 99, 6183–6196 (2015). https://doi.org/10.1007/s00253-015-6766-z

    Article  Google Scholar 

  59. López-García, G., Dublan-García, O., Arizmendi-Cotero, D., Oliván, L.M.G.: Antioxidant and antimicrobial peptides derived from food proteins. Molecules 27, 1343 (2022). https://doi.org/10.3390/molecules27041343

    Article  Google Scholar 

  60. Garzon, A.G., Veras, F.F., Brandelli, A., Drago, S.R.: Purification, identification and in silico studies of antioxidant, antidiabetogenic and antibacterial peptides obtained from sorghum spent grain hydrolysate. LWT 153, 112414 (2022). https://doi.org/10.1016/j.lwt.2021.112414

    Article  Google Scholar 

  61. Edwards, I.A., Alysha, A.G., Kavanagh, A.M., Zuegg, J.: Contribution of amphipathicity and hydrophobicity to the antimicrobial activity and cytotoxicity of β-hairpin peptides. ACS Infect. Dis. 2(6), 442–450 (2016). https://doi.org/10.1021/acsinfecdis.6b00045

    Article  Google Scholar 

  62. Rivero-Pin, F., Leon, J.L., Millan-Linares, M.C., de la Sergio Montserrat Paz, M.: Antimicrobial plant-derived peptides obtained by enzymatic hydrolysis and fermentation as components to improve current food systems. Trends Food Sci. 135, 32–42 (2023). https://doi.org/10.1016/j.tifs.2023.03.005

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Malaysian Agricultural Research and Development Institute and Universiti Putra Malaysia. We were grateful for their kind contribution to providing the substrates and B. licheniformis strains used in this work.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study concept and experimental design. Material preparation, data collection, and analysis were performed by NYR, FWFW, and SRI. The first draft of the manuscript was written by NYR and FWFW. The final manuscript was edited, reviewed, and approved by all authors.

Corresponding author

Correspondence to Fadzlie Wong Faizal Wong.

Ethics declarations

Conflict of interest

There are no relevant financial or nonfinancial interests to disclose for the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd Rashid, N.Y., Indran, S.R., Abdul Manan, M. et al. Valorization of Malaysian Fish Sausage (Keropok Lekor) By-Products into Bioactive Fish Protein Hydrolysate by Bacillus licheniformis Fermentation: Influence of By-Products Characteristics on Nutritional, Antioxidant, and Antibacterial Capacities. Waste Biomass Valor 15, 3169–3185 (2024). https://doi.org/10.1007/s12649-024-02430-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-024-02430-6

Keywords

Navigation