Skip to main content

Advertisement

Log in

Valorization of Pongame Oiltree (Millettia pinnata) Seed and Seed Oil: A Promising Source of Phytochemicals and Its Applications

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Pongame oiltree (Millettia pinnata) is one of the medicinal plants that are grown in humid subtropical climate zones. The seeds are the major source of furanoflavonoids karanjin and pongamol that exhibit anticancerous, antimicrobial, antipesticidal, antilarval, anti-oxidant, and anti-inflammatory properties. The seed oil also possesses antimicrobial properties due to the presence of unsaturated fatty acids namely linoleic, oleic, and linolenic acids. However, there is limited understanding of the mechanisms of action of Millettia pinnata seeds bioactive compounds. Thus, the review aims to describe the comprehensive information with special emphasis on seed and seed oil, the phytochemistry of compounds, the detailed pharmacological potential of phytocompounds, and their role in agri-food industries. As well, the bioactivity of seed and seed oil is explained in detail with their bioactive mechanisms. Millettia pinnata seed and seed oil contain a diverse range of phytochemicals, which vary based on factors such as geographic location, climate, and extraction method. The bioactive mechanisms of the phytochemicals in Millettia pinnata seed and seed oil are diverse, with some compounds acting by modulating key enzymes and signaling pathways, while others act by inducing cell death or inhibiting cell proliferation. Millettia pinnata seed and seed oil have potential applications in the agri-food industry, including as food additives and ingredients, and for their potential to improve the shelf life and nutritional value of food products. Overall, the detailed description of the bioactive mechanisms of the phytochemicals in these compounds adds to the current understanding of their potential therapeutic applications. This review explores its diverse phytocompounds, including karanjin and pongamol, known for insecticidal and medicinal properties. The plant’s alkaloids contribute to anti-inflammatory and antimicrobial effects. Pongamia oil has applications in skin care and even cancer treatment, with additional antibacterial and insecticidal benefits. This cost-effective oil finds uses in cosmetics. This review discusses seed composition, therapeutic uses, Ayurvedic applications, and the plant’s role in various activities, from anti-quorum sensing to antioxidation and anti-inflammation. It underscores the plant’s promising future in pharmaceuticals and agriculture.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available within the article.

References

  1. Saini, R.K., Sivanesan, I., Keum, Y.S.: Phytochemicals of Moringa oleifera: a review of their nutritional, therapeutic and industrial significance. 3 Biotech (2016). https://doi.org/10.1007/s13205-016-0526-3

    Article  Google Scholar 

  2. Badole, S.L., Zanwar, A.A., Khopade, A.N., Bodhankar, S.L.: In vitro antioxidant and antimicrobial activity cycloart-23-ene-3β,-25-diol (B2) isolated from Pongamia pinnata (L. Pierre). Asian Pac. J. Trop. Med. 4, 910–916 (2011)

    Article  Google Scholar 

  3. Nadeem, F., Inam, S., Rashid, U., Kainat, R., Iftikhar, A.: A review of geographical distribution, phytochemistry, biological properties and potential applications of Pongamia pinatta. Int. J. Chem. Biochem. Sci. 10, 79–86 (2016)

    Google Scholar 

  4. Usharani, K.V., Naik, D., Manjunatha, R.L.: Pongamia pinnata (L.): composition and advantages in agriculture: a review. J. Pharmacogn. Phytochem. 8(3), 2181 (2019)

    Google Scholar 

  5. Rekha, M.J., Bettadaiah, B.K., Sindhu Kanya, T.C., Govindaraju, K.: A feasible method for isolation of pongamol from karanja (Pongamia pinnata) seed and its antiinflammatory activity. Ind. Crops Prod. (2020). https://doi.org/10.1016/j.indcrop.2020.112720

    Article  Google Scholar 

  6. Sharma, A., Kaushik, N., Rathore, H.: Karanja (Millettia pinnata (L.) Panigrahi): a tropical tree with varied applications. Phytochem. Rev. 19(3), 643–658 (2020). https://doi.org/10.1007/s11101-020-09670-z

    Article  Google Scholar 

  7. Venkatraman, P.D., Sayed, U., Parte, S., Korgaonkar, S.: Novel antimicrobial finishing of organic cotton fabrics using nano-emulsions derived from Karanja and Gokhru plants. Text. Res. J. (2022). https://doi.org/10.1177/00405175221113364

    Article  Google Scholar 

  8. Rao, R.R., Chaturvedi, V., Babu, K.S., Reddy, P.P., Rao, V.R.S., Sreekanth, P., Sreedhar, A.S., Madhusudana Rao, J.: Synthesis and anticancer effects of pongamol derivatives on mitogen signaling and cell cycle kinases. Med. Chem. Res. 21(5), 634–641 (2012). https://doi.org/10.1007/s00044-011-9563-y

    Article  Google Scholar 

  9. Jahan, S., Mahmud, M.H., Khan, Z., Alam, A., Khalil, A.A., Rauf, A., Tareq, A.M., Nainu, F., Tareq, S.M., Emran, T.B., Khan, M., Khan, I.N., Wilairatana, P., Mubarak, M.S.: Health promoting benefits of pongamol: an overview. Biomed. Pharmacother. (2021). https://doi.org/10.1016/j.biopha.2021.112109

    Article  Google Scholar 

  10. Degani, E., Prasad, M.V.R., Paradkar, A., Pena, R., Soltangheisi, A., Ullah, I., Warr, B., Tibbett, M.: A critical review of Pongamia pinnata multiple applications: from land remediation and carbon sequestration to socioeconomic benefits. J. Environ. Manag. (2022). https://doi.org/10.1016/j.jenvman.2022.116297

    Article  Google Scholar 

  11. Mitra, S., Ghose, A., Gujre, N., Senthilkumar, S., Borah, P., Paul, A., Rangan, L.: A review on environmental and socioeconomic perspectives of three promising biofuel plants Jatropha curcas, Pongamia pinnata, and Mesua ferrea. Biomass Bioenergy (2021). https://doi.org/10.1016/j.biombioe.2021.106173

    Article  Google Scholar 

  12. Suryawanshi, B., Mohanty, B.: Modeling and optimization: supercritical CO2 extraction of Pongamia pinnata (L.) seed oil. J. Environ. Chem. Eng. 6(2), 2660–2673 (2018). https://doi.org/10.1016/j.jece.2018.04.014

    Article  Google Scholar 

  13. Shadangi, K.P., Mohanty, K.: Thermal and catalytic pyrolysis of Karanja seed to produce liquid fuel. Fuel 115, 434–442 (2014). https://doi.org/10.1016/j.fuel.2013.07.053

    Article  Google Scholar 

  14. Singh, A., Bhatt, G., Gujre, N., Mitra, S., Swaminathan, R., Limaye, A.M., Rangan, L.: Karanjin. Phytochemistry (2021). https://doi.org/10.1016/j.phytochem.2020.112641

    Article  Google Scholar 

  15. Plaola, Y., Leangsiri, W., Pongsiriyakul, K., Kiatkittipong, W., Srifa, A., Lim, J.W., Reubroycharoen, P., Kiatkittipong, K., Eiad-Ua, A., Assabumrungrat, S.: Catalytic hydrotreating of crude Pongamia pinnata oil to bio-hydrogenated diesel over sulfided NiMo catalyst. Energies (2022). https://doi.org/10.3390/en15041547

    Article  Google Scholar 

  16. Bora, M.M., Deka, R., Ahmed, N., Kakati, D.K.: Karanja (Millettia pinnata (L.) Panigrahi) seed oil as a renewable raw material for the synthesis of alkyd resin. Ind. Crops Prod. 61, 106–114 (2014). https://doi.org/10.1016/j.indcrop.2014.06.048

    Article  Google Scholar 

  17. Marone, P.A., Olson, J., Matulka, R., Bauter, M., Astwood, J.D.: Safety and toxicologic evaluation of edible Pongamia oil: a novel food ingredient. Food Chem. Toxicol. (2022). https://doi.org/10.1016/j.fct.2022.113213

    Article  Google Scholar 

  18. Abbasi, M.S.A., Tahir, M.A.: Spectroscopic analysis of flavonoids isolated from Pongamia pinnata L. seed oil. Asian J. Chem. Sci. (2020). https://doi.org/10.9734/ajocs/2020/v7i419027

    Article  Google Scholar 

  19. Sajid, Z.I., Anwar, F., Shabir, G., Rasul, G., Alkharfy, K.M., Gilani, A.H.: Antioxidant, antimicrobial properties and phenolics of different solvent extracts from bark, leaves and seeds of Pongamia pinnata (L.) Pierre. Molecules 17(4), 3917–3932 (2012). https://doi.org/10.3390/molecules17043917

    Article  Google Scholar 

  20. Verma, M., Pradhan, S., Sharma, S., Naik, S.N., Prasad, R.: Efficacy of karanjin and phorbol ester fraction against termites (Odontotermes obesus). Int. Biodeterior. Biodegrad. 65(6), 877–882 (2011). https://doi.org/10.1016/j.ibiod.2011.05.007

    Article  Google Scholar 

  21. Purkait, A., Mukherjee, A., Hazra, D.K., Roy, K., Biswas, P.K., Kole, R.K.: Encapsulation, release and insecticidal activity of Pongamia pinnata (L.) seed oil. Heliyon (2021). https://doi.org/10.1016/j.heliyon.2021.e06557

    Article  Google Scholar 

  22. Raghav, D., Mahanty, S., Rathinasamy, K.: Biochemical and toxicological investigation of karanjin, a bio-pesticide isolated from Pongamia seed oil. Pestic. Biochem. Physiol. 157, 108–121 (2019). https://doi.org/10.1016/j.pestbp.2019.03.011

    Article  Google Scholar 

  23. Rajput, M., Bithel, N., Vijayakumar, S.: Antimicrobial, antibiofilm, antioxidant, anticancer, and phytochemical composition of the seed extract of Pongamia pinnata. Arch. Microbiol. 203(7), 4005–4024 (2021). https://doi.org/10.1007/s00203-021-02365-9

    Article  Google Scholar 

  24. Al Muqarrabun, L.M.R., Ahmat, N., Ruzaina, S.A.S., Ismail, N.H., Sahidin, I.: Medicinal uses, phytochemistry and pharmacology of Pongamia pinnata (L.) Pierre: a review. J. Ethnopharmacol. 150(2), 395–420 (2013). https://doi.org/10.1016/j.jep.2013.08.041

    Article  Google Scholar 

  25. Sree, R., Rao, R., Gulshan Md, S.A., Prasanna, L.: Pongamia: assemble of natural wealth. Indo Am. J. Pharm. Res. 4(9), 3642–3653 (2014)

    Google Scholar 

  26. Alibi, S., ben Selma, W.B., Ramos-Vivas, J., Smach, M.A., Touati, R., Boukadida, J., Navas, J., ben Mansour, J.H.: Anti-oxidant, antibacterial, anti-biofilm, and anti-quorum sensing activities of four essential oils against multidrug-resistant bacterial clinical isolates. Curr. Res. Transl. Med. 68(2), 59–66 (2020). https://doi.org/10.1016/j.retram.2020.01.001

    Article  Google Scholar 

  27. Chaudhari, V., Gosai, H., Raval, S., Kothari, V.: Effect of certain natural products and organic solvents on quorum sensing in Chromobacterium violaceum. Asian Pac. J. Trop. Med. 7(S1), S204–S211 (2014). https://doi.org/10.1016/S1995-7645(14)60233-9

    Article  Google Scholar 

  28. Jansen, K.U., Gruber, W.C., Simon, R., Wassil, J., Anderson, A.S.: The impact of human vaccines on bacterial antimicrobial resistance. A review. Environ. Chem. Lett. 19(6), 4031–4062 (2021). https://doi.org/10.1007/s10311-021-01274-z

    Article  Google Scholar 

  29. Kesari, V., Das, A., Rangan, L.: Physico-chemical characterization and antimicrobial activity from seed oil of Pongamia pinnata, a potential biofuel crop. Biomass Bioenergy 34(1), 108–115 (2010). https://doi.org/10.1016/j.biombioe.2009.10.006

    Article  Google Scholar 

  30. Malaikozhundan, B., Vaseeharan, B., Vijayakumar, S., Pandiselvi, K., Kalanjiam, M.A.R., Murugan, K., Benelli, G.: Biological therapeutics of Pongamia pinnata coated zinc oxide nanoparticles against clinically important pathogenic bacteria, fungi and MCF-7 breast cancer cells. Microb. Pathog. 104, 268–277 (2017). https://doi.org/10.1016/j.micpath.2017.01.029

    Article  Google Scholar 

  31. Peixoto, L.R., Rosalen, P.L., Ferreira, G.L.S., Freires, I.A., de Carvalho, F.G., Castellano, L.R., de Castro, R.D.: Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp. Arch. Oral Biol. 73, 179–185 (2017). https://doi.org/10.1016/j.archoralbio.2016.10.013

    Article  Google Scholar 

  32. Benamar-Aissa, B., Gourine, N., Ouinten, M., Harrat, M., Benarfa, A., Yousfi, M.: Synergistic effects of essential oils and phenolic extracts on antioxidant activities responses using two Artemisia species (A. campestris and A. herba alba) combined with Citrus aurantium. Biocatal. Agric. Biotechnol. 47, 102570 (2023). https://doi.org/10.1016/j.bcab.2022.102570

    Article  Google Scholar 

  33. Roy, R., Pal, D., Sur, S., Mandal, S., Saha, P., Panda, C.K.: Pongapin and Karanjin, furanoflavanoids of Pongamia pinnata, induce G2/M arrest and apoptosis in cervical cancer cells by differential reactive oxygen species modulation, DNA damage, and nuclear factor kappa-light-chain-enhancer of activated B cell signaling. Phytother. Res. 33(4), 1084–1094 (2019). https://doi.org/10.1002/ptr.6302

    Article  Google Scholar 

  34. Vadivel, V., Biesalski, H.K.: Contribution of phenolic compounds to the antioxidant potential and type II diabetes related enzyme inhibition properties of Pongamia pinnata L. Pierre seeds. Process Biochem. 46(10), 1973–1980 (2011). https://doi.org/10.1016/j.procbio.2011.07.007

    Article  Google Scholar 

  35. Ghosh, A., Tiwari, G.J.: Role of nitric oxide-scavenging activity of Karanjin and Pongapin in the treatment of Psoriasis. 3 Biotech (2018). https://doi.org/10.1007/s13205-018-1337-5

    Article  Google Scholar 

  36. Rekha, M.J., Bettadaiah, B.K., Muthukumar, S.P., Govindaraju, K.: Synthesis, characterization and anti-inflammatory properties of karanjin (Pongamia pinnata seed) and its derivatives. Bioorg. Chem. (2021). https://doi.org/10.1016/j.bioorg.2020.104471

    Article  Google Scholar 

  37. Dinda, B., Dinda, S., DasSharma, S., Banik, R., Chakraborty, A., Dinda, M.: Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur. J. Med. Chem. 131, 68–80 (2017). https://doi.org/10.1016/j.ejmech.2017.03.004

    Article  Google Scholar 

  38. Wojcieszyńska, D., Guzik, H., Guzik, U.: Non-steroidal anti-inflammatory drugs in the era of the Covid-19 pandemic in the context of the human and the environment. Sci. Total. Environ. (2022). https://doi.org/10.1016/j.scitotenv.2022.155317

    Article  Google Scholar 

  39. Gong, Y., Huang, X., Chen, M., & Xiong, L.: Teprenone improves gastric mucosal injury and dyspeptic symptoms in long term nonsteroidal anti-inflammatory drug users. J. Gastroenterol. Hepatol. 34, 1344–1350 (2019). https://doi.org/10.1111/jgh.14614

  40. Vismaya, Belagihally, S.M., Rajashekhar, S., Jayaram, V.B., Dharmesh, S.M., Thirumakudalu, S.K.C.: Gastroprotective properties of karanjin from Karanja (Pongamia pinnata) seeds; Role as antioxidant and H+, K+-ATPase inhibitor. Evid. Based Complement. Altern. Med. (2011). https://doi.org/10.1093/ecam/neq027

    Article  Google Scholar 

  41. Patel, P.P., Trivedi, N.D.: Effect of karanjin on 2,4,6-trinitrobenzenesulfonic acid-induced colitis in Balb/c mice. Indian J. Pharmacol. 49(2), 161–167 (2017). https://doi.org/10.4103/ijp.IJP_234_15

    Article  Google Scholar 

  42. Saini, P., Lakshmayya, L., Bisht, V.: Anti-Alzheimer activity of isolated karanjin from Pongamia pinnata (L.) Pierre and embelin from Embelia ribes Burm. F. AYU. Int. Q. J. Res. Ayurveda 38(1), 76 (2017). https://doi.org/10.4103/ayu.ayu_174_16

    Article  Google Scholar 

  43. Bhatt, G., Gupta, A., Rangan, L., Mukund Limaye, A.: Global transcriptome analysis reveals partial estrogen-like effects of karanjin in MCF-7 breast cancer cells. Gene (2022). https://doi.org/10.1016/j.gene.2022.146507

    Article  Google Scholar 

  44. Bose, M., Chakraborty, M., Bhattacharya, S., Bhattacharjee, P., Mandal, S., Kar, M., Mishra, R.: Suppression of NF-κB p65 nuclear translocation and tumor necrosis factor-α by Pongamia pinnata seed extract in adjuvant-induced arthritis. J. Immunotoxicol. 11(3), 222–230 (2014). https://doi.org/10.3109/1547691X.2013.824931

    Article  Google Scholar 

  45. Bose, M., Chakraborty, M., Bhattacharya, S., Mukherjee, D., Mandal, S., Mishra, R.: Prevention of arthritis markers in experimental animal and inflammation signalling in macrophage by karanjin isolated from Pongamia pinnata seed extract. Phytother. Res. 28(8), 1188–1195 (2014). https://doi.org/10.1002/ptr.5113

    Article  Google Scholar 

  46. Elakkiya, V., Krishnan, K., Bhattacharyya, A., Selvakumar, R.: Advances in Ayurvedic medicinal plants and nanocarriers for arthritis treatment and management: a review. J. Herb. Med. (2020). https://doi.org/10.1016/j.hermed.2020.100412

    Article  Google Scholar 

  47. Dwivedi, G., Sharma, M.P.: Prospects of biodiesel from Pongamia in India. Renew. Sustain. Energy Rev. 32, 114–122 (2014). https://doi.org/10.1016/j.rser.2014.01.009

    Article  Google Scholar 

  48. Baiju, B., Naik, M.K., Das, L.M.: A comparative evaluation of compression ignition engine characteristics using methyl and ethyl esters of Karanja oil. Renew. Energy 34(6), 1616–1621 (2009). https://doi.org/10.1016/j.renene.2008.11.020

    Article  Google Scholar 

  49. Jaya, N., Selvan, B.K., Vennison, S.J.: Synthesis of biodiesel from pongamia oil using heterogeneous ion-exchange resin catalyst. Ecotoxicol. Environ. Saf. 121, 3–9 (2015). https://doi.org/10.1016/j.ecoenv.2015.07.035

    Article  Google Scholar 

  50. Kumar, R., Ravi Kumar, G., Chandrashekar, N.: Microwave assisted alkalicatalyzed transesterification of Pongamia pinnata seed oil for biodiesel production. Bioresour. Technol. 102(11), 6617–6620 (2011). https://doi.org/10.1016/j.biortech.2011.03.024

    Article  Google Scholar 

  51. Khayoon, M.S., Olutoye, M.A., Hameed, B.H.: Utilization of crude karanj (Pongamia pinnata) oil as a potential feedstock for the synthesis of fatty acid methyl esters. Bioresour. Technol. 111, 175–179 (2012). https://doi.org/10.1016/j.biortech.2012.01.177

    Article  Google Scholar 

  52. Muktham, R., Ball, A.S., Bhargava, S.K., Bankupalli, S.: Bioethanol production from non-edible de-oiled Pongamia pinnata seed residue-optimization of acid hydrolysis followed by fermentation. Ind. Crops Prod. 94, 490–497 (2016). https://doi.org/10.1016/j.indcrop.2016.09.019

    Article  Google Scholar 

  53. Obadiah, A., Kannan, R., Ramasubbu, A., Kumar, S.V.: Studies on the effect of antioxidants on the long-term storage and oxidation stability of Pongamia pinnata (L.) Pierre biodiesel. Fuel Process. Technol. 99, 56–63 (2012). https://doi.org/10.1016/j.fuproc.2012.01.032

    Article  Google Scholar 

  54. Rawat, D.S., Joshi, G., Lamba, B.Y., Tiwari, A.K., Mallick, S.: Impact of additives on storage stability of Karanja (Pongamia pinnata) biodiesel blends with conventional diesel sold at retail outlets. Fuel 120, 30–37 (2014). https://doi.org/10.1016/j.fuel.2013.12.010

    Article  Google Scholar 

  55. Bajpai, S., Sahoo, P.K., Das, L.M.: Feasibility of blending karanja vegetable oil in petro-diesel and utilization in a direct injection diesel engine. Fuel 88(4), 705–711 (2009). https://doi.org/10.1016/j.fuel.2008.09.011

    Article  Google Scholar 

  56. Agarwal, A.K., Dhar, A.: Experimental investigations of performance, emission and combustion characteristics of Karanja oil blends fuelled DICI engine. Renew. Energy 52, 283–291 (2013). https://doi.org/10.1016/j.renene.2012.10.015

    Article  Google Scholar 

  57. Agarwal, A.K., Dhar, A.: Experimental investigations of performance, emission and combustion characteristics of Karanja oil blends fuelled DICI engine. Renew. Energy 52, 283–291 (2013)

    Article  Google Scholar 

  58. Kumar, R., Pal, P.: Lipase immobilized graphene oxide biocatalyst assisted enzymatic transesterification of Pongamia pinnata (Karanja) oil and downstream enrichment of biodiesel by solar-driven direct contact membrane distillation followed by ultrafiltration. Fuel Process. Technol. 211, 106577 (2021). https://doi.org/10.1016/j.fuproc.2020.106577

    Article  Google Scholar 

  59. Perumalsamy, H., Jang, M.J., Kim, J.R., Kadarkarai, M., Ahn, Y.J.: Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Millettia pinnata seed toward three mosquito species. Parasit. Vectors (2015). https://doi.org/10.1186/s13071-015-0848-8

    Article  Google Scholar 

  60. Sahayaraj, K., Madasamy, M., Anbu Radhika, S.: Insecticidal activity of biosilver and gold nanoparticles against Pericallia ricini Fab. (Lepidaptera: Archidae). J. Biopestic. 9(1), 63–72 (2016)

    Article  Google Scholar 

  61. Gabriel Paulraj, M., Ignacimuthu, S., Gandhi, M.R., Shajahan, A., Ganesan, P., Packiam, S.M., Al-Dhabi, N.A.: Comparative studies of tripolyphosphate and glutaraldehyde cross-linked chitosan-botanical pesticide nanoparticles and their agricultural applications. Int. J. Biol. Macromol. 104, 1813–1819 (2017). https://doi.org/10.1016/j.ijbiomac.2017.06.043

    Article  Google Scholar 

  62. Singha, K., Sreeharsha, R., Mariboina, S., Reddy, A.: Dynamics of metabolites and key regulatory proteins in the developing seeds of Pongamia pinnata, a potential biofuel tree species. Ind. Crops Prod. 140, 111621 (2019). https://doi.org/10.1016/j.indcrop.2019.111621

    Article  Google Scholar 

  63. Siroha, A., Punia, S., Kaur, M., Sandhu, K.: A novel starch from Pongamia pinnata seeds: comparison of its thermal, morphological and rheological behaviour with starches from other botanical sources. Int. J. Biol. Macromol. (2019). https://doi.org/10.1016/j.ijbiomac.2019.10.033

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Microbiology, Lovely Professional University, Phagwara, India, for providing facilities.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aarti Bains or Minaxi Sharma.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devidas, T.B., Vyas, A., Sridhar, K. et al. Valorization of Pongame Oiltree (Millettia pinnata) Seed and Seed Oil: A Promising Source of Phytochemicals and Its Applications. Waste Biomass Valor (2023). https://doi.org/10.1007/s12649-023-02352-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-023-02352-9

Keywords

Navigation