Skip to main content

Advertisement

Log in

A Simple Material and Energy Input–Output Performance in Evaluating Silica Production from Conventional, Fume, and Biomass Thermochemical Conversion Routes

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Rice husk valorization to produce silica is believed to involve an eco-friendly process rather than silica production from conventional and fume routes. Nevertheless, the quantitative point of view regarding this is still not widely disclosed. In this study, a simple material and energy input–output analysis (M&E I/O) is employed to compare the environmental impact of the production of 1 tonne of silica from conventional, fume, and biomass thermochemical conversion routes. The scope consideration includes raw material, transportation, utility systems, main production process, and output streams as environmental impact. Results show that conventional and fume routes need 3.86 tonnes of sandstone and biomass thermochemical conversion route needs 6.56 tonnes of rice husk. For conventional and fume routes, energy is supplied from 1194.08 and 1954.99 kg of coal combustion, whereas the biomass thermochemical conversion route uses rice husk as fuel and additional coal of only 238.38 kg. Further, the lowest CO2-equivalent emission of 0.85 tonnes is nominated to the biomass thermochemical conversion route, while conventional and fume routes are 10.09 and 18.62 tonnes, respectively. The produced wastewater from conventional, fume, and biomass thermochemical conversion routes is 27.27, 27.13, and 24.76 tonnes, successively. This study concludes and proves that silica production from rice husk is more eco-friendly and has low environmental impact, but wastewater treatment to meet the effluent standard should be applied.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data is contained within the manuscript.

References

  1. Zhou, Y., Quan, G., Wu, Q., Zhang, X., Niu, B., Wu, B., Huang, Y., Pan, X., Wu, C.: Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm. Sin. B. 8, 165–177 (2018). https://doi.org/10.1016/j.apsb.2018.01.007

    Article  Google Scholar 

  2. Lázaro, A., Brouwers, H.J.H.: Nano-silica production by a sustainable process: application in building materials, 8th fib PhD Symposium in Kgs. Lyngby, Denmark, pp. 1–6 (2010)

  3. Senff, L., Labrincha, J.A., Ferreira, V.M., Hotza, D., Repette, W.L.: Effect of nano-silica on rheology and fresh properties of cement pastes and mortars. Constr. Build. Mater. 23, 2487–2491 (2009). https://doi.org/10.1016/j.conbuildmat.2009.02.005

    Article  Google Scholar 

  4. Rovani, S., Santos, J.J., Corio, P., Fungaro, D.A.: Highly pure silica nanoparticles with high adsorption capacity obtained from sugarcane waste ash. ACS Omega 3, 2618–2627 (2018). https://doi.org/10.1021/acsomega.8b00092

    Article  Google Scholar 

  5. Mohammed, R.H., Mesalhy, O., Elsayed, M.L., Hou, S., Su, M., Chow, L.C.: Physical properties and adsorption kinetics of silica-gel/water for adsorption chillers. Appl. Therm. Eng. 137, 368–376 (2018). https://doi.org/10.1016/j.applthermaleng.2018.03.088

    Article  Google Scholar 

  6. Permatasari, N., Sucahya, T.N., Nandiyanto, A.B.D.: Review: Agricultural wastes as a source of silica material. Indonesian J. Sci. Technol. 1, 82–106 (2016). https://doi.org/10.17509/ijost.v1i1.8619

    Article  Google Scholar 

  7. Laskowski, Ł, Laskowska, M., Vila, N., Schabikowski, M., Walcarius, A.: Mesoporous silica-based materials for electronics-oriented applications. Molecules 24, 2395 (2019). https://doi.org/10.3390/molecules24132395

    Article  Google Scholar 

  8. Bindar, Y., Steven, S., Kresno, S.W., Hernowo, P., Restiawaty, E., Purwadi, R., Prakoso, T.: Large-scale pyrolysis of oil palm frond using two-box chamber pyrolyzer for cleaner biochar production. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-02842-1

    Article  Google Scholar 

  9. Quispe, I., Navia, R., Kahhat, R.: Life cycle assessment of rice husk as an energy source: A Peruvian case study. J. Clean. Prod. 209, 1235–1244 (2019). https://doi.org/10.1016/j.jclepro.2018.10.312

    Article  Google Scholar 

  10. Andersen, S., Solomon, S.: Special report on safeguarding the ozone layer and the global climate system: Issues related to hydrofluorocarbons and perfluorocarbons. Cambridge University Press (2005)

  11. Restiawaty, E., Bindar, Y., Syukri, K., Syahroni, O., Steven, S., Pramudita, R.A., Budhi, Y.W.: Production of acid-treated-biochar and its application to remediate low concentrations of Al(III) and Ni(II) ions in the water contaminated with red mud. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03338-8

    Article  Google Scholar 

  12. Joglekar, S.N., Kharkar, R.A., Mandavgane, S.A., Kulkarni, B.D.: Process development of silica extraction from RHA: a cradle to gate environmental impact approach. Environ. Sci. Pollut. Res. 26, 492–500 (2019). https://doi.org/10.1007/s11356-018-3648-9

    Article  Google Scholar 

  13. Grbeš, A.: A life cycle assessment of silica sand: comparing the beneficiation processes. Sustain. 8, 1–9 (2016). https://doi.org/10.3390/su8010011

    Article  Google Scholar 

  14. Worden, R.H., Morad, S.: Quartz cementation in oil field sandstones: a review of the key controversies. Spec. Publs Int. Ass. Sediment. 29, 1–20 (2000)

    Google Scholar 

  15. Conley, D.J., Struyf, E.: Silica. In: Encyclopedia of inland waters, pp. 85–88. Elsevier Inc (2009)

    Chapter  Google Scholar 

  16. Graf, C.: Silica, amorphous. Kirk-Othmer Encyclopedia Chem Technol 22, 1–43 (2006)

    Google Scholar 

  17. Saha, T., Anboo, S.: Design of an electric arc furnace for fused quartz industry. Int. J. Eng. Trends Technol. 15, 153–156 (2014). https://doi.org/10.14445/22315381/ijett-v15p230

    Article  Google Scholar 

  18. Mehta, P.K., Gjørv, O.E.: Properties of Portland cement concrete containing fly ash and condensed silica-fume. Cem. Concr. Res. 12, 587–595 (1982)

    Article  Google Scholar 

  19. Panesar, D.K.: Supplementary cementing materials. Elsevier Ltd (2019)

    Google Scholar 

  20. Gungor, A.: Simulation of emission performance and combustion efficiency in biomass fired circulating fluidized bed combustors. Biomass Bioenergy 34, 506–514 (2010). https://doi.org/10.1016/j.biombioe.2009.12.016

    Article  Google Scholar 

  21. Konttinen, J., Kallio, S., Hupa, M., Winter, F.: NO formation tendency characterization for solid fuels in fluidized beds. Fuel 108, 238–246 (2013). https://doi.org/10.1016/j.fuel.2013.02.011

    Article  Google Scholar 

  22. Chungsangunsit, T., Gheewala, S.H., Patumsawad, S.: Emission assessment of rice husk combustion for power production. Int. J. Energy Environ. Eng. 3, 625–630 (2009)

    Google Scholar 

  23. Searchinger, T.D., Beringer, T., Holtsmark, B., Kammen, D.M., Lambin, E.F., Lucht, W., Raven, P., Van-Ypersele, J.-P.: Europe’s renewable energy directive poised to harm global forests. Nat. Commun. 9, 1–4 (2018)

    Article  Google Scholar 

  24. Prasara-A, J., Grant, T.: Comparative life cycle assessment of uses of rice husk for energy purposes. Int. J. Life Cycle Assess. 16, 493–502 (2011). https://doi.org/10.1007/s11367-011-0293-7

    Article  Google Scholar 

  25. Hernowo, P., Steven, S., Restiawaty, E., Bindar, Y.: Nature of mathematical model in lignocellulosic biomass pyrolysis process kinetic using volatile state approach. J. Taiwan Inst. Chem. Eng. 139, 104520 (2022). https://doi.org/10.1016/j.jtice.2022.104520

    Article  Google Scholar 

  26. Todkar, B.S., Deorukhkar, O.A., Deshmukh, S.M.: Extraction of silica from rice husk. Int. J. Eng. Res. Dev. 12, 69–74 (2016). https://doi.org/10.1042/cs0840231

    Article  Google Scholar 

  27. Ame-Oko, A., Adegboye, B.A., Tsado, J.: Analytical method to determine the potential of using rice husk for off grid electricity and heat generation. Niger. J. Technol. 37, 222 (2018). https://doi.org/10.4314/njt.v37i1.29

    Article  Google Scholar 

  28. Azat, S., Sartova, Z., Bekseitova, K., Askaruly, K.: Extraction of high-purity silica from rice husk via hydrochloric acid leaching treatment. Turkish J. Chem. 43, 1258–1269 (2019). https://doi.org/10.3906/kim-1903-53

    Article  Google Scholar 

  29. Steven, S., Hernowo, P., Restiawaty, E., Irawan, A., Rasrendra, C.B., Riza, A., Bindar, Y.: Thermodynamics simulation performance of rice husk combustion with a realistic decomposition approach on the devolatilization stage. Waste Biomass Valor. 13, 2735–2747 (2022). https://doi.org/10.1007/s12649-021-01657-x

    Article  Google Scholar 

  30. Yu, Y., Yang, Y., Cheng, Z., Blanco, P.H., Liu, R., Bridgwater, A.V., Cai, J.: Pyrolysis of rice husk and corn stalk in auger reactor. 1: Characterization of char and gas at various temperatures. Energy Fuels 30, 10568–10574 (2016). https://doi.org/10.1021/acs.energyfuels.6b02276

    Article  Google Scholar 

  31. Bazargan, A., Bazargan, M., McKay, G.: Optimization of rice husk pretreatment for energy production. Renew. Energy 77, 512–520 (2015). https://doi.org/10.1016/j.renene.2014.11.072

    Article  Google Scholar 

  32. Glushankova, I., Ketov, A., Krasnovskikh, M., Rudakova, L., Vaisman, I.: Rice hulls as a renewable complex material resource. Resources 7, 1–11 (2018). https://doi.org/10.3390/resources7020031

    Article  Google Scholar 

  33. Su, Y., Liu, L., Zhang, S., Xu, D., Du, H., Cheng, Y., Wang, Z., Xiong, Y.: A green route for pyrolysis poly-generation of typical high ash biomass, rice husk: Effects on simultaneous production of carbonic oxide-rich syngas, phenol-abundant bio-oil, high-adsorption porous carbon and amorphous silicon dioxide. Bioresour. Technol. 295, 1–9 (2020)

    Article  Google Scholar 

  34. Quispe, I., Navia, R., Kahhat, R.: Energy potential from rice husk through direct combustion and fast pyrolysis: a review. Waste Manag. 59, 200–210 (2017). https://doi.org/10.1016/j.wasman.2016.10.001

    Article  Google Scholar 

  35. Steven, S., Restiawaty, E., Bindar, Y.: Operating variables on production of high purity bio-silica from rice hull ash by extraction process. J. Eng. Technol. Sci. 54, 220304 (2022). https://doi.org/10.5614/j.eng.technol.sci.2022.54.3.4

    Article  Google Scholar 

  36. Subbukrishna, D.N., Suresh, K.C., Paul, P.J., Dasappa, S., Rajan, N.K.S.: Precipitated silica from rice husk ash by IPSIT process. In: 15th European biomass conference & exhibition, pp. 2091–2093 (2007)

  37. Prempeh, C.O., Formann, S., Hartmann, I., Nelles, M.: An improved method for the production of biogenic silica from cornhusk using sol–gel polymeric route. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03615-6

    Article  Google Scholar 

  38. Kubota, Y., Noguchi, R., Hidaka, Y., Noda, T., Genkawa, T., Ahamed, T., Takigawa, T.: Comprehensive evaluation method for rice husk combustion to establish biomass recycling system. J. Japan Inst. Energy. 94, 137–142 (2015). https://doi.org/10.3775/jie.94.137

    Article  Google Scholar 

  39. Prasara-A, J., Gheewala, S.H.: Sustainable utilization of rice husk ash from power plants: a review. J. Clean. Prod. 167, 1020–1028 (2017). https://doi.org/10.1016/j.jclepro.2016.11.042

    Article  Google Scholar 

  40. Ringdalen, E.: Changes in quartz during heating and the possible effects on Si production. JOM 67, 484–492 (2015). https://doi.org/10.1007/s11837-014-1149-y

    Article  Google Scholar 

  41. Seo, E.S.M., Andreoli, M., Chiba, R.: Silicon tetrachloride production by chlorination method using rice husk as raw material. J. Mater. Process. Technol. 141, 351–356 (2003). https://doi.org/10.1016/S0924-0136(03)00287-5

    Article  Google Scholar 

  42. Thomas, M.D.A.: The effect of supplementary cementing materials on alkali-silica reaction: a review. Cem. Concr. Res. 41, 1224–1231 (2011)

    Article  Google Scholar 

  43. Steven, S., Pasymi, P., Hernowo, P., Restiawaty, E., Bindar, Y.: Investigation of rice husk semi-continuous combustion in suspension furnace to produce amorphous silica in ash. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04777-7

    Article  Google Scholar 

  44. Blissett, R., Sommerville, R., Rowson, N., Jones, J., Laughlin, B.: Valorisation of rice husks using a TORBED® combustion process. Fuel Process. Technol. 159, 247–255 (2017). https://doi.org/10.1016/j.fuproc.2017.01.046

    Article  Google Scholar 

  45. Dizaji, H.B., Zeng, T., Hartmann, I., Enke, D., Schliermann, T., Lenz, V., Bidabadi, M.: Generation of high quality biogenic silica by combustion of rice husk and rice straw combined with pre- and post-treatment strategies—a review. Appl. Sci. 9, 1–27 (2019). https://doi.org/10.3390/app9061083

    Article  Google Scholar 

  46. Steven, S., Restiawaty, E., Pasymi, P., Bindar, Y.: An appropriate acid leaching sequence in rice husk ash extraction to enhance the produced green silica quality for sustainable industrial silica gel purpose. J. Taiwan Inst. Chem. Eng. 122, 51–57 (2021). https://doi.org/10.1016/j.jtice.2021.04.053

    Article  Google Scholar 

  47. Steven, S., Restiawaty, E., Pasymi, P., Bindar, Y.: Influences of pretreatment, extraction variables, and post treatment on bench-scale rice husk black ash (RHBA) processing to bio-silica. Asia-Pac. J. Chem. Eng. 16, e2694 (2021). https://doi.org/10.1002/apj.2694

    Article  Google Scholar 

  48. Mysen, B., Richet, P.: Chapter 5—Silica. In: Silica glasses and melts, 2nd edn., pp. 143–183. Elsevier (2019)

    Chapter  Google Scholar 

  49. Sdiri, A., Higashi, T., Bouaziz, S., Benzina, M.: Synthesis and characterization of silica gel from siliceous sands of southern Tunisia. Arab. J. Chem. 7, 486–493 (2014). https://doi.org/10.1016/j.arabjc.2010.11.007

    Article  Google Scholar 

  50. Sarikaya, M., Depci, T., Aydogmus, R., Yucel, A., Kizilkaya, N.: Production of nano-amorphous SiO2 from Malatya pyrophyllite. IOP Conf. Ser.: Earth Environ. Sci. 44, 052004 (2016). https://doi.org/10.1088/1755-1315/44/5/052004

    Article  Google Scholar 

  51. BPS Indonesia: Directory of Energy Mining Companies in West Java Province. Badan Pusat Statistik Provinsi Jawa Barat (2022)

  52. Pemerintahan Kota Cilegon: Kota Cilegon (Cilegon City). https://www.cilegon.go.id/

  53. Laohalidanond, K., Heil, J., Wirtgen, C.: The production of synthetic diesel from biomass. KMITL Sci. Tech. J. 6, 35–45 (2006)

    Google Scholar 

  54. Webfleet: What is the diesel consumption per mile of trucks? Bridgestone Mobility Solutions (2020)

  55. Ramli, Y., Steven, S., Restiawaty, E., Bindar, Y.: Simulation study of bamboo leaves valorization to small-scale electricity and bio-silica using ASPEN PLUS. Bioenerg. Res. 15, 1918–1926 (2022). https://doi.org/10.1007/s12155-022-10403-7

    Article  Google Scholar 

  56. Smith, J.M., Van Ness, H.C., Abbott, M.M.: Production of power from heat. In: Introduction to chemical engineering thermodynamics, 7th edn., pp. 290–316. McGraw-Hill (2005)

    Google Scholar 

  57. Utami, I.H., Kramdibrata, A.M., Widyasanti, A., Herwanto, T.: Performance test and economic analysis of compound rice milling (compact rice milling CRM 10): case study at PT. BUMR (Badan Usaha Milik Rakyat) pangan terhubung Pasirhalang, Sukaraja, Sukabumi regency. J. Appl. Agric. Sci. Technol. 3, 15–28 (2019)

    Google Scholar 

  58. Sharma, P., Chakkaravarthi, A., Singh, V., Subramanian, R.: Grinding characteristics and batter quality of rice in different wet grinding systems. J. Food Eng. 88, 499–506 (2008). https://doi.org/10.1016/j.jfoodeng.2008.03.009

    Article  Google Scholar 

  59. Couper, J.R., Penney, W.R., Fair, J.R., Walas, S.M.: Disintegration, agglomeration, and size separation of particulate solids. In: Chemical process equipment selection and design, 3rd ed., pp. 361–398. Butterworth-Heinemann (2012)

  60. Pode, R.: Potential applications of rice husk ash waste from rice husk biomass power plant. Renew. Sustain. Energy Rev. 53, 1468–1485 (2016). https://doi.org/10.1016/j.rser.2015.09.051

    Article  Google Scholar 

  61. Prasad, R., Pandey, M.: Rice husk ash as a renewable source for the production of value added silica gel and its application: an overview. Bull. Chem. React. Eng. Catal. 7, 1–25 (2012). https://doi.org/10.9767/bcrec.7.1.1216.1-25

    Article  Google Scholar 

  62. Speight, J.E.: Handbook of coal analysis. Wiley (2005)

    Book  Google Scholar 

  63. BPS Indonesia: Mining statistics of non-petroleum and natural gas. Badan Pusat Statistik (2019)

  64. Dockrill, P., Friedrich, F.: Increasing the energy efficiency of boiler and heater installations. In: Boilers and heaters: improving energy efficiency, pp. 8–13. Natural Resources Canada (2001)

    Google Scholar 

  65. World Coal: Losses in the coal supply chain. Palladian Publications Ltd. (2013)

  66. Rahbar, K., Mahmoud, S., Al-Dadah, R.K., Moazami, N., Mirhadizadeh, S.A.: Review of organic Rankine cycle for small-scale applications. Energy Convers. Manag. 134, 135–155 (2017). https://doi.org/10.1016/j.enconman.2016.12.023

    Article  Google Scholar 

  67. Steven, S., Restiawaty, E., Bindar, Y.: A simulation study on rice husk to electricity and silica mini-plant: from Organic Rankine Cycle (ORC) study to its business and investment plan. Waste Biomass Valor. 14, 1787–1797 (2023). https://doi.org/10.1007/s12649-022-01957-w

    Article  Google Scholar 

  68. Tian, H., Shu, G.Q.: Organic Rankine Cycle systems for large-scale waste heat recovery to produce electricity. In: Organic Rankine cycle (ORC) power systems: technologies and applications, pp. 613–636. Elsevier Ltd (2017)

    Chapter  Google Scholar 

  69. Saidur, R., Abdelaziz, E.A., Demirbas, A., Hossain, M.S., Mekhilef, S.: A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 15, 2262–2289 (2011). https://doi.org/10.1016/j.rser.2011.02.015

    Article  Google Scholar 

  70. Fearnside, P.M.: Global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decomposition, and soils in forest conversion, shifting cultivation, and secondary vegetation. Clim. Change 46, 115–158 (2000). https://doi.org/10.1023/A:1005569915357

    Article  Google Scholar 

  71. Abdul Razak, N.A.A., Abdulrazik, A.: Modelling and optimization of biomass-based cogeneration plant. IOP Conf. Ser.: Earth Environ. Sci. 257, 012027 (2019). https://doi.org/10.1088/1755-1315/257/1/012027

    Article  Google Scholar 

  72. BPS Indonesia: Harvested Area, Production, and Productivity of Indonesian Rice by Province. Badan Pusat Statistik (2022)

  73. Pijarn, N., Jaroenworaluck, A., Sunsaneeyametha, W., Stevens, R.: Synthesis and characterization of nanosized-silica gels formed under controlled conditions. Powder Technol. 203, 462–468 (2010). https://doi.org/10.1016/j.powtec.2010.06.007

    Article  Google Scholar 

  74. Chen, G., Du, G., Ma, W., Yan, B., Wang, Z., Gao, W.: Production of amorphous rice husk ash in a 500 kW fluidized bed combustor. Fuel 144, 214–221 (2015). https://doi.org/10.1016/j.fuel.2014.12.012

    Article  Google Scholar 

  75. Nunes, L.J.R., Matias, J.C.O., Catalão, J.P.S.: Mixed biomass pellets for thermal energy production: a review of combustion models. Appl. Energy 127, 135–140 (2014). https://doi.org/10.1016/j.apenergy.2014.04.042

    Article  Google Scholar 

  76. Demirbas, A.: Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 30, 219–230 (2004). https://doi.org/10.1016/j.pecs.2003.10.004

    Article  Google Scholar 

  77. Madusari, S., Jamari, S.S., Nordin, N.I.A.A., Bindar, Y., Prakoso, T., Restiawaty, E., Steven, S.: Hybrid hydrothermal carbonization and ultrasound technology on oil palm biomass for hydrochar production. CBEN. 10, 37–54 (2023). https://doi.org/10.1002/cben.202200014

    Article  Google Scholar 

  78. Johnson, E.: Goodbye to carbon neutral: getting biomass footprints right. Environ. Impact Assess. Rev. 29, 165–168 (2009)

    Article  Google Scholar 

  79. Dessie, W., Luo, X., Wang, M., Feng, L., Liao, Y., Wang, Z., Yong, Z., Qin, Z.: Current advances on waste biomass transformation into value-added products. Appl. Microbiol. Biotechnol. 104, 4757–4770 (2020)

    Article  Google Scholar 

  80. Lee, T., Othman, R., Yeoh, F.Y.: Development of photoluminescent glass derived from rice husk. Biomass Bioenergy 59, 1–13 (2013). https://doi.org/10.1016/j.biombioe.2013.08.028

    Article  Google Scholar 

  81. Tchobanoglous, G., Burton, F.L., Stensel, H.D.: Wastewater engineering treatment and reuse. Metcalf & Eddy Inc (2003)

    Google Scholar 

  82. Giménez, J.B., Robles, Á., Carretero, L., Durán, F., Ruano, M.V., Gatti, M.N., Ribes, J., Ferrer, J., Seco, A.: Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresour. Technol. 102, 8799–8806 (2011). https://doi.org/10.1016/j.biortech.2011.07.014

    Article  Google Scholar 

  83. Chun, J., Lee, J.H.: Recent progress on the development of engineered silica particles derived from rice husk. Sustainability. 12, 1–19 (2020)

    Article  Google Scholar 

  84. Zulkifli, N.S.C., Ab Rahman, I., Mohamad, D., Husein, A.: A green sol-gel route for the synthesis of structurally controlled silica particles from rice husk for dental composite filler. Ceram. Int. 39, 4559–4567 (2013). https://doi.org/10.1016/j.ceramint.2012.11.052

    Article  Google Scholar 

  85. Alizadeh Arasi, M., Salem, A., Salem, S.: Extraction of nano-porous silica from hydrosodalite produced via modification of low-grade kaolin for removal of methylene blue from wastewater. J. Chem. Technol. Biotechnol. 95, 1989–2000 (2020). https://doi.org/10.1002/jctb.6387

    Article  Google Scholar 

Download references

Acknowledgements

Mr. Steven thanks the Postdoctoral Scheme at Research Center for Sustainable Production System and Life Cycle Assessment, National Research and Innovation Agency (BRIN), Indonesia, 2023–2024.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

SS: Original draft preparation; Writing, Reviewing, and Editing; Formal analysis; Critical revising; Data interpretation; Visualization. ICS, ZW, MM, RYHS: Writing, Reviewing, and Editing; Formal analysis; Critical revising; Validation. NN, ESAS, YR, PH, PP: Formal analysis. ER: Formal analysis; Supervision. YB: Conceptualization; Supervision.

Corresponding author

Correspondence to Yazid Bindar.

Ethics declarations

Competing interest

There is no conflict or competing of interest to declare.

Ethical Approval

This declaration is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steven, S., Sophiana, I.C., Murti, Z. et al. A Simple Material and Energy Input–Output Performance in Evaluating Silica Production from Conventional, Fume, and Biomass Thermochemical Conversion Routes. Waste Biomass Valor 15, 2705–2720 (2024). https://doi.org/10.1007/s12649-023-02348-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02348-5

Keywords

Navigation