Skip to main content
Log in

Concrete with Wet and Calcined Water Treatment Plant Waste: Macro and Micro Scale Analysis

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The present study evaluates the influence of the replacement of natural sand for different contents of water treatment sludge (in wet and calcined conditions) on the performance of the concrete considering macro and micro scale analyses. Mixtures substituting 5, 7, and 10% of wet sludge (WS) and 5, 10, and 20% of calcined sludge (CS) were produced. For the macro scale analyses, the specimens were tested by water absorption, compressive and tensile strength, and modulus of elasticity. Carbonation, leaching, microtomography 3D, and SEM were carried out for the micro-scale analyses. From the results obtained, it can be observed that the WS significantly reduces the strength of concrete, not being indicated for applications in structural concrete. The replacement of up to 20% of sand with CS. In addition to increasing the compressive strength of the concrete, increased porosity, water absorption, and carbonation depth requires attention to durability aspects for using this residue in the production of structural and non-structural concretes. Using wastewater treatment sludge can contribute to circularity in the construction industry in line with sustainable development goals.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data will be made available upon request to the authors.

References

  1. Smol M. Circular economy approach in the water and wastewater sector. In: Circular Economy and Sustainability. Elsevier, London, 2022. p. 1–19

  2. Brasil. Plano Nacional de Resíduos Sólidos [Internet]. Brasília; 2020 [cited 2023 Feb 24]. Available from: https://portal-api.sinir.gov.br/wp-content/uploads/2022/07/Planares-B.pdf

  3. Ren, B., Zhao, Y., Ji, B., Wei, T., Shen, C.: Granulation of drinking water treatment residues: Recent advances and prospects. Water 12(5), 1400 (2020)

    Article  Google Scholar 

  4. Bundhoo, Z.M.A.: Solid waste management in least developed countries: Current status and challenges faced. J. Mater. Cycles Waste Manag. 20, 1867–1877 (2018)

    Article  Google Scholar 

  5. Bandieira, M., Zat, T., Schuster, S.L., et al.: Water treatment sludge in the production of red-ceramic bricks: Effects on the physico-mechanical properties. Mater. Struct. Mater. Constr. 54, 168 (2021)

    Article  Google Scholar 

  6. Ramirez, K.G., Possan, E., Dezen, B.G., Colombo, M.: Potential uses of waste sludge in concrete production. Manag. Environ. Quality Int. J. 28(6), 821–38 (2017)

    Article  Google Scholar 

  7. Carlos, A.R.: Tratamento de Lodos de Estações de Tratamento de Água, 1st edn. Bulcher, São Paulo (2021)

    Google Scholar 

  8. Ahmad, T., Ahmad, K., Alam, M.: Sustainable management of water treatment sludge through 3 ‘R’concept. J. Clean. Product. 15(124), 1–3 (2016)

    Article  Google Scholar 

  9. Mojapelo, K.S., Kupolati, W.K., Ndambuki, J.M., Sadiku, E.R., Ibrahim, I.D., Maepa, C.: Sustainable usage and the positive environmental impact of wastewater dry sludge-based concrete. Results Mater. 1(16), 100336 (2022)

    Article  Google Scholar 

  10. Andrade, J.J., Possan, E., Wenzel, M.C., Silva, S.R.: Feasibility of using calcined water treatment sludge in rendering mortars: A technical and sustainable approach. Sustainability 11(13), 3576 (2019)

    Article  Google Scholar 

  11. de Oliveira Andrade, J.J., Wenzel, M.C., da Rocha, G.H., da Silva, S.R.: Performance of rendering mortars containing sludge from water treatment plants as fine recycled aggregate. J. Clean. Product. 10(192), 159–68 (2018)

    Article  Google Scholar 

  12. Mañosa, J., Formosa, J., Giro-Paloma, J., Maldonado-Alameda, A., Quina, M.J., Chimenos, J.M.: Valorisation of water treatment sludge for lightweight aggregate production. Construct. Build. Mater. 1(269), 121335 (2021)

    Article  Google Scholar 

  13. Cremades, L.V., Cusidó, J.A., Arteaga, F.: Recycling of sludge from drinking water treatment as ceramic material for the manufacture of tiles. J. Clean. Prod. 201, 1071–1080 (2018)

    Article  Google Scholar 

  14. Ling, Y.P., Tham, R.H., Lim, S.M., et al.: Evaluation and reutilization of water sludge from fresh water processing plant as a green clay substituent. Appl. Clay. Sci. 143, 300 (2017)

    Article  Google Scholar 

  15. Hagemann, S.E., Gastaldini, A.L.G., Cocco, M., et al.: Synergic effects of the substitution of Portland cement for water treatment plant sludge ash and ground limestone: Technical and economic evaluation. J. Clean. Prod. 214, 916–926 (2019)

    Article  Google Scholar 

  16. Liu, Y., Zhuge, Y., Chow, C.W.K., et al.: The potential use of drinking water sludge ash as supplementary cementitious material in the manufacture of concrete blocks. Resour. Conserv. Recycl. 168, 105291 (2021)

    Article  Google Scholar 

  17. de Godoy, L.G.G., Rohden, A.B., Garcez, M.R., et al.: Valorization of water treatment sludge waste by application as supplementary cementitious material. Constr. Build. Mater. 223, 939 (2019)

    Article  Google Scholar 

  18. Danish, A., Ozbakkaloglu, T.: Greener cementitious composites incorporating sewage sludge ash as cement replacement: A review of progress, potentials, and future prospects. J. Clean. Prod. 371, 13334 (2022)

    Article  Google Scholar 

  19. Ruviaro, A.S., Silvestro, L., Scolaro, T.P., et al.: Use of calcined water treatment plant sludge for sustainable cementitious composites production. J. Clean. Prod. 327, 129484 (2021)

    Article  Google Scholar 

  20. Sales, A., De Souza, F.R., Dos Santos, W.N., et al.: Lightweight composite concrete produced with water treatment sludge and sawdust: Thermal properties and potential application. Constr. Build. Mater. 24, 2446–2453 (2010)

    Article  Google Scholar 

  21. Sales, A., De Souza, F.R., Almeida, F.D.C.R.: Mechanical properties of concrete produced with a composite of water treatment sludge and sawdust. Constr. Build. Mater. 25, 2793–2798 (2011)

    Article  Google Scholar 

  22. Mojapelo, K.S., Kupolati, W.K., Ndambuki, J.M., et al.: Utilization of wastewater sludge for lightweight concrete and the use of wastewater as curing medium. Case Stud. Constr. Mater. 15, e00667 (2021)

    Google Scholar 

  23. Ramirez, K.G., Possan, E., Bittencourt, P.R.S., et al.: Physico-chemical characterization of centrifuged sludge from the Tamanduá water treatment plant (Foz do Iguaçu, PR). Revista Materia. 18, 23 (2018)

    Google Scholar 

  24. Dahhou, M., El Hamidi, A., El Moussaouiti, M.: Reusing drinking water sludge: Physicochemical features, environmental impact and applications in building materials: A mini review. Chem. Afr. 20, 1–7 (2023)

    Google Scholar 

  25. Gomes, S.D.C., Zhou, J.L., Li, W., et al.: Recycling of raw water treatment sludge in cementitious composites: Effects on heat evolution, compressive strength and microstructure. Resour. Conserv. Recycl. 161, 104970 (2020)

    Article  Google Scholar 

  26. Turner, T., Wheeler, R., Stone, A., et al.: Potential Alternative Reuse Pathways for Water Treatment Residuals: Remaining Barriers and Questions—A Review. Springer International Publishing, Water Air Soil Pollut (2019)

    Google Scholar 

  27. Fiore, F.A., Rodgher, S., Ito, C.Y., dos Santos Bardini, V.S., Klinsky, L.M.: Water sludge reuse as a geotechnical component in road construction: Experimental study. Clean. Eng. Technol. 1(9), 100512 (2022)

    Article  Google Scholar 

  28. Smol, M., Kulczycka, J., Henclik, A., Gorazda, K., Wzorek, Z.: The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy. J. Clean. Prod. 15(95), 45–54 (2015). https://doi.org/10.1016/j.jclepro.2015.02.051

    Article  Google Scholar 

  29. Barrera-Díaz, C., Martínez-Barrera, G., Gencel, O., et al.: Processed wastewater sludge for improvement of mechanical properties of concretes. J. Hazard. Mater. 192, 108–115 (2011)

    Google Scholar 

  30. ABNT. NBR 9779: Mortar and Hardened Concrete — Determination of Water Absorption by Capillarity. Rio de Janeiro; 2021

  31. ABNT. NBR 5739: Concrete - Compression Test of Cylindrical Specimens. Rio de Janeiro: Brazilian National Standards Organization; 2018

  32. ABNT. NBR 7222: Concrete and Mortar - Determination of the Tension Strength by Diametrical Compression of Cylindrical Test Specimens. Rio de Janeiro: Brazilian National Standards Organization; 2011

  33. ABNT. NBR 8522: Concrete - Determination of Static Modulus of Elasticity and Deformation by Compression. Rio de Janeiro: Brazilian National Standards Organization; 2017

  34. Pauletti, C., Possan, E., Dal Molin, D.C.: Accelerated carbonation: State of the art of research in Brazil. Ambiente Construído. 7(4), 7–20 (2007)

    Google Scholar 

  35. ABNT. NBR 10005. Procedure for Obtention Leaching Extract of Solid Wastes. Rio de Janeiro; 2004

  36. RILEM. Measurement of Hardened Concrete Carbonation Depth. 1988

  37. Sandoval, G.F., Jussiani, E.I., de Moura, A.C., Andrello, A.C., Toralles, B.M.: Hydraulic and morphological characterization of clogged pervious concrete (PC). Constr. Build. Mater. 7(322), 126464 (2022)

    Article  Google Scholar 

  38. Wang, Y.-S., Dai, J.-G.: X-ray computed tomography for pore-related characterization and simulation of cement mortar matrix. NDT E Int. 86, 28–35 (2017)

    Article  Google Scholar 

  39. Provis, J.L., Myers, R.J., White, C.E., et al.: X-ray microtomography shows pore structure and tortuosity in alkali-activated binders. Cem. Concr. Res. 42, 855–864 (2012)

    Article  Google Scholar 

  40. Rougelot, T., Burlion, N., Bernard, D., et al.: About microcracking due to leaching in cementitious composites: X-ray microtomography description and numerical approach. Cem. Concr. Res. 40, 271–283 (2010)

    Article  Google Scholar 

  41. Rattanasak, U., Kendall, K.: Pore structure of cement/pozzolan composites by X-ray microtomography. Cem. Concr. Res. 35, 637–640 (2005)

    Article  Google Scholar 

  42. Wang, L., Zou, F., Fang, X., et al.: A novel type of controlled low strength material derived from alum sludge and green materials. Constr. Build. Mater. 165, 792–800 (2018)

    Article  Google Scholar 

  43. Gomes, S.D., Zhou, J.L., Li, W., Long, G.: Progress in manufacture and properties of construction materials incorporating water treatment sludge: A review. Resour. Conserv. Recycl. 1(145), 148–59 (2019)

    Article  Google Scholar 

  44. Monzó, J., Payá, J., Borrachero, M.V., et al.: Use of sewage sludge ash(SSA)-cement admixtures in mortars. Cem. Concr. Res. 26, 1389–1398 (1996)

    Article  Google Scholar 

  45. Toledo Filho RD, Fontes CMA. Sewage sludge ash. Sustainable Concrete Made with Ashes and Dust from Different Sources. Elsevier; 2022. pp. 233–279

  46. Smol, M., Kulczycka, J., Henclik, A., Gorazda, K., Wzorek, Z.: The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy. J. Clean. Product. 15(95), 45–54 (2015)

    Article  Google Scholar 

  47. Hoppen, C., Portella, K.F., Joukoski, A., Trindade, E.M., Andreóli, C.V.: Uso de lodo de estação de tratamento de água centrifugado em matriz de concreto de cimento portland para reduzir o impacto ambiental. Química Nova 29, 79–84 (2006)

    Article  Google Scholar 

  48. Yagüe, A., Valls, S., Vázquez, E., et al.: Durability of concrete with addition of dry sludge from waste water treatment plants. Cem. Concr. Res. 35, 1064–1073 (2005)

    Article  Google Scholar 

  49. ABNT. NBR 10004: Solid Waste - Classification. Rio de Janeiro; 2004

  50. Valls, S., Vazquez, E.: Leaching properties of stabilised/solidified cement-admixtures-sewage sludges systems. Waste Manag. 22(1), 37–45 (2002)

    Article  Google Scholar 

  51. Liu, Y., Zhuge, Y., Chow, C.W., Keegan, A., Pham, P.N., Li, D., Qian, G., Wang, L.: Recycling drinking water treatment sludge into eco-concrete blocks with CO2 curing: Durability and leachability. Sci. Total Environ. 1(746), 141182 (2020)

    Article  Google Scholar 

  52. Liu, Y., Zhuge, Y., Chow, C.W.K., et al.: Utilization of drinking water treatment sludge in concrete paving blocks: Microstructural analysis, durability and leaching properties. J. Environ. Manag. 262, 110352 (2020)

    Article  Google Scholar 

  53. Kulakowski, M.P., Pereira, F.M., Dal Molin, D.C.: Carbonation-induced reinforcement corrosion in silica fume concrete. Constr. Build. Mater. 23(3), 1189–95 (2009)

    Article  Google Scholar 

  54. Parrott, L.J.: A Review of Carbonation in Reinforced Concrete. British Cement Association, London (1987)

    Google Scholar 

  55. Possan, E., Thomaz, W.A., Aleandri, G.A., et al.: CO2 uptake potential due to concrete carbonation: A case study. Case Stud. Constr. Mater. 6, 147–161 (2017). https://doi.org/10.1016/j.cscm.2017.01.007

    Article  Google Scholar 

  56. Mazurana, L., Bittencourt, P.R.S., Scremin, F.R., et al.: Determination of Co2 capture in rendering mortars produced with recycled construction and demolition waste by thermogravimetry. J. Therm. Anal. Calorim. 3, 1 (2021)

    Google Scholar 

  57. Ekolu, S.O.: A review on effects of curing, sheltering, and CO2 concentration upon natural carbonation of concrete. Constr. Build. Mater. 30(127), 306–20 (2016)

    Article  Google Scholar 

  58. Yao, X., Xu, Z., Guan, J., Liu, L., Shangguan, L., Xi, J.: Influence of wastewater content on mechanical properties, microstructure, and durability of concrete. Buildings 12(9), 1343 (2022)

    Article  Google Scholar 

  59. Andrade, J.J., Possan, E., Wenzel, M.C., Silva, S.R.: Feasibility of using calcined water treatment sludge in rendering mortars: A technical and sustainable approach. Sustainability 11(13), 3576 (2019). https://doi.org/10.3390/su11133576

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Itaipu Concrete Technology Laboratory for supporting the experimental project and the Sanepar's research support. For research support, to Unila's Performance, Structures, and Materials Laboratory (CNM-LADEMA) and PRPPG. The authors also thank Professor Paulo Rodrigo Stival Bittencourt for his participation in the chemical part.

Author information

Authors and Affiliations

Authors

Contributions

EP: Funding acquisition; Conceptualization, Supervision, Methodology, writing-original draft preparation, writing- reviewing and editing. KGR: Experimental work and data collection. JJde OA: Discussion of results, writing- reviewing and editing. G F. B. S: writing-original draft preparation, discussion of results, writing-reviewing and editing.

Corresponding author

Correspondence to Edna Possan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Possan, E., Ramirez, K.G., de Oliveira Andrade, J.J. et al. Concrete with Wet and Calcined Water Treatment Plant Waste: Macro and Micro Scale Analysis. Waste Biomass Valor 15, 2611–2623 (2024). https://doi.org/10.1007/s12649-023-02311-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02311-4

Keywords

Navigation