Skip to main content
Log in

Valorization of the Noni (Morinda citrifolia) Seeds as Source of a Protein Concentrate and Its Physicochemical, Functional, and Structural Characterization

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The noni juice industry produces a large volume of seeds as by-products, which contain proteins that can be recovered to be used as food ingredients. The aims of this study were the valorization of noni seeds as source of a protein concentrate (NSPC) and their physicochemical, functional, and structural characterization. NSPC was produced by alkaline extraction and isoelectric precipitation, obtaining a powder with a protein content of 76.59%, whose values of the color parameters were L* = 55. 32%, a* = 4.60%, and b* = 19.09. Water (WHCa) and oil (OHCa) holding capacities of the NSPC were 4.36 g H2O/g protein and 11.69 g oil/g protein, respectively, while the emulsifying activity, emulsion stability, foaming capacity, foaming stability, least gelling concentration, and in vitro digestibility were, 29.20%, 50.00%, 180.33%, 94.60%, 4.00%, and 78.51%. Glutelins (64.62%) were the main protein fraction of the NSPC. Hence, NSPC could be used as ingredient for food products as bread, soups, salad dressings, mayonnaise, and processed meat products.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data is available on reasonable request.

References

  1. FAO: World food and agriculture-statistical yearbook 2022. FAO, Rome (2022)

    Google Scholar 

  2. Yahaya, S.M., Mardiyya, A.Y.: Review of post-harvest losses of fruits and vegetables. Biomed. J. Sci. Technol. Res. 13, 10192–10200 (2019). https://doi.org/10.26717/BJSTR.2019.13.002448

    Article  Google Scholar 

  3. Antonisamy, A.J., Marimuthu, S., Malayandi, M., Rajendran, K., Lin, Y.-C., Andaluri, G., Lee, S.L., Kumar, V., Ponnusamy, V.K.: Sustainable approaches on industrial food wastes to value-added products—a review on extraction methods, characterizations, and its biomedical applications. Environ. Res. 217, e114758 (2023)

    Article  Google Scholar 

  4. Esparza, I., Jiménez-Moreno, N., Bimbela, F., Ancín-Azpilicueta, C., Gandía, L.M.: Fruit and vegetable waste management: conventional and emerging approaches. J. Environ. Manag. 265, e110510 (2020). https://doi.org/10.1016/j.jenvman.2020.110510

    Article  Google Scholar 

  5. Banerjee, J., Singh, R., Vijayaraghavan, R., MacFarlane, D., Patti, A.F., Arora, A.: Bioactives from fruit processing wastes: green approaches to valuable chemicals. Food Chem. 225, 10–22 (2017). https://doi.org/10.1016/j.foodchem.2016.12.093

    Article  Google Scholar 

  6. Trigo, J.P., Alexandre, E.M.C., Saraiva, J.A., Pintado, M.E.: High value-added compounds from fruit and vegetable by-products - characterization, bioactivities and application in the development of novel food products. Crit. Rev. Food Sci. Nutr. 60, 1388–1416 (2020). https://doi.org/10.1080/10408398.2019.1572588

    Article  Google Scholar 

  7. Aschemann-Witzel, J., Ribeiro Bizzo, H., Chaves, D., Ferreira Faria-Machado, A.C.S., Gomes Soares, A., de Oliveira Fonseca, A., Kidmose, M.J., Rosenthal, U.: Sustainable use of tropical fruits? Challenges and opportunities of applying the waste-to-value concept to international value chains. Crit. Rev. Food Sci. Nutr. (2021). https://doi.org/10.1080/10408398.2021.1963665

    Article  Google Scholar 

  8. Rico, X., Gullon, B., Alonso, J.L., Yanez, R.: Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: an overview. Food Res. Int. 132, e109086 (2020). https://doi.org/10.1016/j.foodres.2020.109086

    Article  Google Scholar 

  9. Resendiz-Vazquez, J.A., Ulloa, J.A., UrÍas-Silvas, J.E., Bautista-Rosales, P.U., Ramírez-Ramírez, J.C., Rosas-Ulloa, P., González-Torres, L.: Effect of high-intensity ultrasound on the technofunctional properties and structure of jackfruit (Artocarpus heterophyllus) seed protein isolate. Ultrason. Sonochem. 37, 436–444 (2017). https://doi.org/10.1016/j.ultsonch.2017.01.042

    Article  Google Scholar 

  10. Espinosa-Murillo, N.C., Ulloa, J.A., Urías-Silvas, J.E., Rosas-Ulloa, P., Ramírez-Ramírez, J.C., Gutiérrez-Leyva, R., Ulloa-Rangel, B.E.: Impact of high-intensity ultrasound on the physicochemical and functional properties of a protein isolate from passion fruit (Passiflora edulis) seeds. Int. J. Food Eng. 17, 609–618 (2021). https://doi.org/10.1515/ijfe-2021-0050

    Article  Google Scholar 

  11. Pérez Saucedo, M.R., Ulloa, J.A., Ulloa, R., Ulloa, P., Ramírez Ramírez, J.C., Silva-Carrillo, Y., Rangel, U.: Caracterización tecno-funcional de un concentrado proteínico obtenido de la semilla de mango (Mangifera indica L.). Biotecnia 23, 120–126 (2021). https://doi.org/10.18633/biotecnia.v23i1.1306

    Article  Google Scholar 

  12. Flores-Jiménez, N.T., Ulloa, J.A., Urías-Silvas, J.E., Ramírez-Ramírez, J.C., Bautista-Rosales, P.U., Gutiérrez-Leyva, R.: Influence of high-intensity ultrasound on physicochemical and functional properties of a guamuchil Pithecellobium dulce (Roxb.) seed protein isolate. Ultrason. Sonochem. 84, e105976 (2022). https://doi.org/10.1016/j.ultsonch.2022.105976

    Article  Google Scholar 

  13. Rosas Ulloa, P., Ulloa, J.A., Ulloa Rangel, B.E., Martir, L.: Protein isolate from orange (Citrus sinensis L.) seeds: effect of high-intensity ultrasound on its physicochemical and functional properties. Food Bioproc. Tech. 16, 589–602 (2023). https://doi.org/10.1007/s11947-022-02956-4

    Article  Google Scholar 

  14. Higa, F., Nickerson, M.T.: Plant protein-carbohydrate conjugates: a review of their production, functionality and nutritional attributes. Food Rev. Int. (2021). https://doi.org/10.1080/87559129.2021.1926485

    Article  Google Scholar 

  15. Rao, M.V., Sunil, C.K., Rawson, A., Chidanand, D.V., Venkatachlapathy, N.: Modifying the plant proteins techno-functionalities by novel physical processing technologies: a review. Crit. Rev. Food Sci. Nutr. (2021). https://doi.org/10.1080/10408398.2021.1997907

    Article  Google Scholar 

  16. Shen, Y., Hong, S., Li, Y.: Chapter three—pea protein composition, functionality, modification, and food applications: a review. Adv. Food Nutr. Res. 101, 71–127 (2022). https://doi.org/10.1016/bs.afnr.2022.02.002

    Article  Google Scholar 

  17. Jahurul, M.H.A., Patricia, M., Shihabul, A., Norazlina, M.R., Ramlah George, M.R., Noorakmar, A.W., Lee, J.S., Jumardi, R., Jinap, S., Zaidul, I.S.M.: A review on functional and nutritional properties of noni fruit seed (Morinda citrifolia L.) and its oil. Food Biosci. 41, e101000 (2021). https://doi.org/10.1016/j.fbio.2021.101000

    Article  Google Scholar 

  18. Barbosa, M., Lima, D., dos Santos, A.L., Lima Cardoso, C.A., Canielas Krause, A., Bastos, L., Caramão, E.: Studies related to the chemical composition, biological activities and toxicity of methanolic extracts of noni (Morinda citrifolia) fruits and leaves. Nat. Prod. Res. 36, 5868–5871 (2022). https://doi.org/10.1080/14786419.2021.2021199

    Article  Google Scholar 

  19. West, B.J., Deng, S., Isami, F., Uwaya, A., Jensen, C.J.: The potential health benefits of noni juice: a review of human intervention studies. Foods 7, 58 (2018). https://doi.org/10.3390/foods7040058

    Article  Google Scholar 

  20. Choo, Y.X., Teh, L.K., Tan, C.X.: Effects of sonication and thermal pasteurization on the nutritional, antioxidant, and microbial properties o noni juice. Molecules 28, 313 (2023). https://doi.org/10.3390/molecules28010313

    Article  Google Scholar 

  21. Raman, M., Ambalam, P., Doble, M.: 9—Probiotics, prebiotics, and fibers in nutritive and functional beverages. In: Grumezescu, A.M., Holban, A.M. (eds.) Nutrients in Beverages, pp. 315–367. Academic Press, Hoboken (2019)

    Chapter  Google Scholar 

  22. Lee, S.T., Radu, S., Ariffin, A., Ghazali, H.M.: Physico-chemical characterization of oils extracted from noni, spinach, lady’s finger, bitter gourd and mustard seeds and copra. Int. J. Food Prop. 18, 2508–2527 (2015). https://doi.org/10.1080/10942912.2014.986577

    Article  Google Scholar 

  23. Jahurul, M.H.A., Jack, C.S.C., Syifa, A.A.B., Islam, S., Norazlina, M.R., Shihabul, A., Zaidul, I.S.M.: Physicochemical and antioxidant properties, total phenolic and nutritional contents of noni (Morinda citrifolia) seed and its oil cultivated in Sabah. Malaysia. Food Chem. Adv. 1, e100079 (2022). https://doi.org/10.1016/j.focha.2022.100079

    Article  Google Scholar 

  24. Fontes, R.F., Andrade, J.K.S., Rajan, M., Narain, N.: Chemical characterization of different parts of noni (Morinda citrifolia) fruit and its freeze-dried pulp powder with emphasis on its bioactive compounds and antioxidant activities. Food Sci. Technol. 43, e103722 (2023). https://doi.org/10.1590/fst.103722

    Article  Google Scholar 

  25. Almeida, E.S., de Oliveira, D., Hotza, D.: Properties and applications of Morinda citrifolia (noni): a review. Compr. Rev. Food Sci. Food Saf. 18, 883–909 (2019). https://doi.org/10.1111/1541-4337.12456

    Article  Google Scholar 

  26. Nogueira, F.C., Costa, A.S., de Carvalho Oliveira Campos, D., Guedes Silva, G.S., Franco, A.X., Gomes Soares, P.M., de Oliveira Rocha, R., Silva Damasceno, R.O., Nunes de Alencar, N.M., Ponte de Souza, M.H.L., de Oliveira, H.D.: Peptide isolated from noni seeds confers gastroprotective effect by improving inflammation and oxidative stress in mice. Int. J. Pep Res. Ther. (2022). https://doi.org/10.1007/s10989-022-10440-y

    Article  Google Scholar 

  27. Vasconcelos, I.P., Vassoler Silva, R.E., Crivelari Costa, P.M., Rodrigues, L.J.: Nutrition and bioactive potential of the noni fruit cultivated from the Mato Grosso State. Ciência Rural 51, e20200372 (2021). https://doi.org/10.1590/0103-8478cr20200372

    Article  Google Scholar 

  28. Ortiz-Hernandez, A.A., Araiza-Esquivel, M., Delgadillo-Ruiz, L., Jortega-Sigala, J.J., Durán-Muñoz, H.A., Mendez-Garcia, V.H., Yacaman, M.J., Vega-Carrillo, H.R.: Physical characterization of sunflower seeds dehydrated by using electromagnetic induction and low-pressure system. Innov. Food Sci. Emerg. Technol. 60, e102285 (2020). https://doi.org/10.1016/j.ifset.2019.102285

    Article  Google Scholar 

  29. Anandakumar, T.M., Kumar, D., Shivanna, B., Kumar, R.: Physical properties of Ashwagandha seeds (Withania somnifera L.)—a medicinal crop. Ind. Crops Prod. 186, e115233 (2022). https://doi.org/10.1016/j.indcrop.2022.115233

    Article  Google Scholar 

  30. AOAC International: Official methods of AOAC international, 21st edn. AOAC International, Gaithersburg (2019)

    Google Scholar 

  31. Sahin, C.C., Erbay, Z., Nurcan Koca, N.: The physical, microstructural, chemical and sensorial properties of spray dried full-fat white cheese powders stored in different multilayer packages. J. Food Eng. 229, 57–64 (2018). https://doi.org/10.1016/j.jfoodeng.2017.11.022

    Article  Google Scholar 

  32. Wang, J., Wang, A., Zang, X., Tan, L., Xu, B., Chen, H., Jin, Z., Ma, W.: Physicochemical, functional and emulsion properties of edible protein from avocado (Persea americana Mill) oil processing by-products. Food Chem. 288, 146–153 (2019). https://doi.org/10.1016/j.foodchem.2019.02.098

    Article  Google Scholar 

  33. Li, M., Wen, X., Peng, P., Wang, Y., Wang, K., Ni, Y.: Functional properties of protein isolates from bell pepper (Capsicum annuum L. var. Annuum) seeds. LWT Food Sci. Technol. 97, 802–810 (2018). https://doi.org/10.1016/j.lwt.2018.07.069

    Article  Google Scholar 

  34. Ma, T., Zhu, H., Wang, J., Wang, Q., Yu, L., Sun, B.: Influence of extraction and solubilizing treatments on the molecular structure and functional properties of peanut protein. LWT-Food Sci. Technol. 79, 197–204 (2017). https://doi.org/10.1016/j.lwt.2017.01.037

    Article  Google Scholar 

  35. Ulloa, J.A., Rosas-Ulloa, P., Ulloa-Rangel, B.E.: Physicochemical and functional properties of a protein isolate produced from safflower (Carthamus tinctorius L.) meal by ultrafiltration. J. Sci. Food Agric. 91, 572–577 (2011). https://doi.org/10.1002/jsfa.4227

    Article  Google Scholar 

  36. Benelhadj, S., Gharsallaoui, A., Degraeve, P., Attia, H., Ghorbel, D.: Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate. Food Chem. 194, 1056–1063 (2016). https://doi.org/10.1016/j.foodchem.2015.08.133

    Article  Google Scholar 

  37. Amza, T., Amadou, I., Balla, A., Zhou, H.: Antioxidant capacity of hydrolyzed protein fractions obtained from an under-explored seed protein: gingerbread plum (Neocarya macrophylla). J. Food Sci. Technol. 52, 2770–2778 (2015). https://doi.org/10.1007/s13197-014-1297-7

    Article  Google Scholar 

  38. Benestante, A., Chalapud, M.C., Baümler, E., Carrín, M.E.: Physical and mechanical properties of lemon (Citrus lemon) seeds. J. Saudi Soc. Agric. Sci. (2023). https://doi.org/10.1016/j.jssas.2022.11.002

    Article  Google Scholar 

  39. Murakonda, S., Patel, G., Dwivedi, M.: Characterization of engineering properties and modeling mass and fruit fraction of wood apple (Limonia acidissima) fruit for post-harvest processing. J. Saudi Soc. Agric. Sci. 21, 267–277 (2022). https://doi.org/10.1016/j.jssas.2021.09.005

    Article  Google Scholar 

  40. Paksoy, M., Aydin, C., Türkmen, Ã., Seymen, M.: Modeling of some physical properties of watermelon (Citrullus lanatus (Thund.) Mansef) seed depending on moisture content and mineral composition. Pak. J. Bot. 42, 2775–2783 (2010)

    Google Scholar 

  41. Mansouri, A., Mirzabe, A.H., Ráufi, A.: Physical properties and mathematical modeling of melon (Cucumis melo L.) seeds and kernels. J. Saudi Soc. Agric. Sci. 16, 218–226 (2017). https://doi.org/10.1016/j.jssas.2015.07.001

    Article  Google Scholar 

  42. Ramesh, B., Reddy, B.S., Veerangoud, M., Anantachar, M., Sharanagouda, H., Shanwad, U.K.: Properties of cotton seed in relation to design of a pneumaticseed metering device. Indian J. Dryland Agric. Res. Dev. 30, 69–76 (2015). https://doi.org/10.5958/2231-6701.2015.00011.1

    Article  Google Scholar 

  43. de Viana, M.E., Guimarães Barbosa, E., Laviola de Oliveira, A.C., Santana Milagres, R., de Carvalho Pinto, F.A., Corrêa, P.C.: Physical properties of yellow passion fruit seeds (Passiflora edulis) during the drying process. Sci. Hortic. 261, 109032 (2020). https://doi.org/10.1016/j.scienta.2019.109032

    Article  Google Scholar 

  44. Razavi, S.M.A., Milani, E.: Some physical properties of the watermelon seeds. Afr. J. Wood Sci. For. 8, 1–5 (2020)

    Google Scholar 

  45. Romuli, R., Karaj, S., Müller, J.: Physical properties of Jatropha curcas L. fruits and seeds with respect to their maturity stage. Appl. Sci. 9, 1802 (2019). https://doi.org/10.3390/app9091802

    Article  Google Scholar 

  46. Hamdani, A., Rather, S.A., Shah, A., Gani, A., Wani, S.M., Masoodi, F.A., Gani, A.: Physical properties of barley and oats cultivars grown in high altitude himalayan regions of India. J. Food Meas. Charact. 8, 296–304 (2014). https://doi.org/10.1007/s11694-014-9188-1

    Article  Google Scholar 

  47. Rafiee, S., Riyahi, R., Dalvand, M.J., Keyhani, A.: Some physical characteristics of pomegranate, seeds and arils. J. Agric. Technol. 7, 1523–1537 (2011)

    Google Scholar 

  48. Flores-Jiménez, N.T., Ulloa, J.A., Ortiz-Basurto, R.I., Urías-Silvas, O.B.: Application of high-intensity ultrasound to modify the rheological properties of a guamuchil Pithecellobium dulce (Roxb.) seed protein isolate. Int. J. Food Prop. 26, 739–751 (2023). https://doi.org/10.1080/10942912.2023.2183171

    Article  Google Scholar 

  49. Coşkun, Ö., Gülseren, İ: Aqueous extraction and functionality of protein concentrates manufactured from cold press meals of pumpkin, pomegranate and grape seeds. Nutrire (2020). https://doi.org/10.1186/s41110-020-00114-4

    Article  Google Scholar 

  50. Haque, M.A., Akter, F., Rahman, H., Baqui, M.A.: Jackfruit seeds protein isolate by spray drying method: the functional and physicochemical characteristics. Food Nut. Sci. 11, 355–374 (2020). https://doi.org/10.4236/fns.2020.115026

    Article  Google Scholar 

  51. Mechmeche, M., Kachouri, F., Chouabi, M., Ksontini, H., Setti, K., Hamdi, M.: Optimization of extraction parameters of protein isolate from tomato seed using response surface methodology. Food Anal. Methods 10, 809–819 (2017). https://doi.org/10.1007/s12161-016-0644

    Article  Google Scholar 

  52. Niak, M., Natarajan, V., Modupalli, N., Thangaraj, S., Rawson, A.: Pulse ultrasound assisted extraction of protein from deffated bitter melon seeds (Momardica charantia L.) meal: kinetics and quality measurements. LWT-Food Sci. Technol. 155, 112997 (2022). https://doi.org/10.1016/j.lwt.2021.112997

    Article  Google Scholar 

  53. Stępień, A., Grzyb, K.: Comparison of critical storage parameters of the powders containing soy protein isolate and inulin, based on the concepts: water activity and temperature of glass transition. Int. J. Biol. Macromol. 230, 123174 (2023). https://doi.org/10.1016/j.ijbiomac.2023.123174

    Article  Google Scholar 

  54. Castañeda-López, G.G., Ulloa, J.A., Rosas-Ulloa, P., Ramírez-Ramírez, J.C., Gutierrez-Leyva, R., Silva-Carrillo, Y., Ulloa-Rangel, B.E.: Ultrasound use as a pretreatment for shrimp (Litopenaeus vannamei) dehydration and its effect on physicochemical, microbiological, structural, and rehydration properties. J. Food Process. Pres. 45, e15366 (2021). https://doi.org/10.1111/jfpp.15366

    Article  Google Scholar 

  55. Piornos, J., Burgos-Díaz, C., Ogura, T., Morales, E., Rubilar, M., Maureira-Butler, I., Salvo-Garrido, H.: Functional and physicochemical properties of a protein isolate from AluProt-CGNA: a novel protein-rich lupin variety (Lupinus luteus). Food Res. Int. 76, 719–724 (2015). https://doi.org/10.1016/j.foodres.2015.07.013

    Article  Google Scholar 

  56. Wani, A.A., Sogi, D.S., Singh, P., Shivhare, U.S.: Characterization and functional properties of watermelon (Citrullus lanatus) seed protein isolates and salt assisted protein concentrates. Food Sci. Biotechnol. 20, 877–887 (2011). https://doi.org/10.1007/s10068-011-0122-6

    Article  Google Scholar 

  57. Ulloa, J.A., Villalobos Barbosa, M.C., Resendiz Vazquez, J.A., Rosas Ulloa, P., Ramírez Ramírez, J.C., Silva Carrillo, Y., González Torres, L.: Production, physico-chemical and functional characterization of a protein isolate from jackfruit (Artocarpus heterophyllus) seeds. CyTA J. Food 15, 497–507 (2017). https://doi.org/10.1080/19476337.2017.1301554

    Article  Google Scholar 

  58. López, D.N., Galante, M., Raimundo, R., Spelzini, D., Boeris, V.: Functional properties of amaranth, quinoa and chia proteins and the biological activities of their hydrolyzates. Food Res. Int. 116, 419 (2019). https://doi.org/10.1016/j.foodres.2018.08.056

    Article  Google Scholar 

  59. Shen, Y., Li, Y.: Acylation modification and/or guar gum conjugation enhanced functional properties of pea protein isolate. Food Hydrocoll. 117, e106686 (2021). https://doi.org/10.1016/j.foodhyd.2021.106686

    Article  Google Scholar 

  60. Biswas, B., Sit, N.: Effect of ultrasonication on functional properties of tamarind seed protein isolates. J. Food Sci. Technol. 57, 2070–2078 (2020). https://doi.org/10.1007/s13197-020-04241-8

    Article  Google Scholar 

  61. Amagliani, L., Silva, J.V.C., Saffon, M., Dombrowski, J.: On the foaming properties of plant proteins: current status and future opportunities. Trends Food Sci. Technol. 118, 261–272 (2021). https://doi.org/10.1016/j.tifs.2021.10.001

    Article  Google Scholar 

  62. Villacís-Chiriboga, J., Prandi, P., Ruales, J., Van Camp, J., Sforza, S., Elst, K.: Valorization of soursop (Annona muricata) seeds as alternative oil and protein source using novel de-oiling and protein extraction techniques. LWT-Food Sci. Technol. (2023). https://doi.org/10.1016/j.lwt.2023.114777

    Article  Google Scholar 

  63. Bhattacharya, S., Bal, S., Mukherjee, R.K., Bhattacharya, S.: Functional and nutritional properties of tamarind (Tamarindus indica) kernel protein. Food Chem. 49, 1–9 (1994). https://doi.org/10.1016/0308-8146(94)90224-0

    Article  Google Scholar 

  64. Jyothi lakshmi, A., Kaul, P.: Nutritional potential, bioaccessibility of minerals and functionality of watermelon (Citrullus vulgaris) seeds. LWT-Food Sci. Technol. 44, 1821–1826 (2011). https://doi.org/10.1016/j.lwt.2011.04.001

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank to IBQ. Nancy Dinorah Ruelas Hernández, for their valuable support in preparing and taking the scanning electron microscopy image of the NSPC included in this study.

Funding

This research was supported by the Patronage to Administer the Special Tax Destined to the Autonomous University of Nayarit within the project registered SIP22-189.

Author information

Authors and Affiliations

Authors

Contributions

JAHR: Investigation, Methodology, Writing—original draft. JAU: Investigation, Writing—original draft, Writing—review & editing, Conceptualization, Supervision, Data curation, Funding acquisition. PRU: Software, Supervision, Validation. BEUR: Conceptualization, Supervision, Visualization.

Corresponding author

Correspondence to José Armando Ulloa.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the study reported in this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández Ramírez, J.A., Ulloa, J.A., Ulloa Rangel, B.E. et al. Valorization of the Noni (Morinda citrifolia) Seeds as Source of a Protein Concentrate and Its Physicochemical, Functional, and Structural Characterization. Waste Biomass Valor 15, 2033–2043 (2024). https://doi.org/10.1007/s12649-023-02270-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02270-w

Keywords

Navigation