Skip to main content
Log in

Synthesis of Sulfonated Magnetic Nano-catalyst Using Rice Husk Ash for Corncob Hydrolysis: Kinetic and Thermodynamic Study

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study developed a magnetic solid acid catalyst for corncob hydrolysis. The core, Fe3O4 nanoparticle of the catalyst, was prepared using the co-precipitation method, which was supported by SiO2 nanoparticles prepared from rice husk ash. The Fe3O4/C–SiO2 was modified to produce a solid acid catalyst via the sulfonation method. Properties of Fe3O4/C and the sulfonated catalyst were assessed using FTIR, SEM, EDS, XRD, XPS, and VSM. Pretreated corncob was hydrolyzed at 80, 90, and 100 oC under a solid-to-liquid ratio of 1:10, using sulfonated Fe3O4/C for 100 min. Results showed that sulfonated Fe3O4/C–SiO2 contained HSO3 group indicating the success of the sulfonation process. The catalyst possessed a porous surface with a surface area of 72 m2/g and a total acid density of 0.96 mmol/g. The hydrolysis rate of corncob increased with reaction time and temperature, with the highest total reducing sugar observed at 90 °C. Batch data obtained from the corncob hydrolysis using a solid catalyst can be described by Saeman’s and integral first-order reaction models, establishing that cellulose hydrolysis is a first-order reaction. The activation energy for glucose formation was 12.33 and 42.4 kJ/mol for Saeman’s and first-order reaction models, respectively. Thermodynamic parameters; ∆H, ∆S, and ∆G revealed that the hydrolysis process was thermodynamically favoured, and the glucose formation was more stable relative to the degradation products. Sulfonated Fe3O4/C–SiO2 showed sustained activity after being reused four times.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data supporting the current study are available within the article.

References

  1. Zakzeski, J., Grisel, R.J., Smit, A.T., Weckhuysen, B.M.: Solid acid-catalyzed cellulose hydrolysis monitored by situ ATR‐IR spectroscopy. ChemSusChem 5(2), 430–437 (2012)

    Article  CAS  PubMed  Google Scholar 

  2. Gámez, S., Ramírez, J.A., Garrote, G., Vázquez, M.: Manufacture of fermentable sugar solutions from sugar cane bagasse hydrolyzed with phosphoric acid at atmospheric pressure. J. Agric. Food Chem. 52(13), 4172–4177 (2004)

    Article  PubMed  Google Scholar 

  3. Verardi, A., De Bari, I., Ricca, E., Calabrò, V.: Hydrolysis of lignocellulosic biomass: current status of processes and technologies and future perspectives. In: Bioethanol, pp. 95–122. InTech, Rijeka (2012)

    Google Scholar 

  4. Lenihan, P., Orozco, A., O’Neill, E., Ahmad, M., Rooney, D., Walker, G.: Dilute acid hydrolysis of lignocellulosic biomass. Chem. Eng. J. 156(2), 395–403 (2010)

    Article  CAS  Google Scholar 

  5. Gao, X., Kumar, R., Wyman, C.E.: Fast hemicellulose quantification via a simple one-step acid hydrolysis. Biotechnol. Bioeng. 111(6), 1088–1096 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. Zhu, T., Li, P., Wang, X., Yang, W., Chang, H., Ma, S.: Optimization of formic acid hydrolysis of corn cob in xylose production. Korean J. Chem. Eng. 31(9), 1624–1631 (2014)

    Article  CAS  Google Scholar 

  7. FAOSTAT. Food and Agriculture Organization of the United Nations.: Statistics Division 2020. www.fao.org/faostat/en/#data/QC (2020). Accessed on 10 2022

  8. Gómora-Hernández, J.C., Carreño-de-León, M.C., Flores-Alamo, N., Hernández-Berriel, M.C., Fernández-Valverde, S.M.: Kinetic and thermodynamic study of corncob hydrolysis in phosphoric acid with a low yield of bacterial inhibitors. Biomass Bioenerg. 143, 105830 (2020)

    Article  Google Scholar 

  9. Parajó, J.C., Domínguez, H., Domínguez, J.: Biotechnological production of xylitol. Part 1: interest of xylitol and fundamentals of its biosynthesis. Bioresour. Technol. 65(3), 191–201 (1998)

    Article  Google Scholar 

  10. Jeffries, T.W.: Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17(3), 320–326 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. Li, X., Shu, F., He, C., Liu, S., Leksawasdi, N., Wang, Q., Qi, W., Alam, M.A., Yuan, Z., Gao, Y.: Preparation and investigation of highly selective solid acid catalysts with sodium lignosulfonate for hydrolysis of hemicellulose in corncob. RSC Adv. 8(20), 10922–10929 (2018)

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  12. Qi, W., He, C., Wang, Q., Liu, S., Yu, Q., Wang, W., Leksawasdi, N., Wang, C., Yuan, Z.: Carbon-based solid acid pretreatment in corncob saccharification: specific xylose production and efficient enzymatic hydrolysis. ACS Sustain. Chem. Eng. 6(3), 3640–3648 (2018)

    Article  CAS  Google Scholar 

  13. Hoang, P.H., Chung, N.H., Dien, L.Q.: Porous ZSM-5 zeolite catalyst modified with sulfonic acid functional groups for hydrolysis of biomass. J. Iran. Chem. Soc. 16(10), 2203–2210 (2019)

    Article  CAS  Google Scholar 

  14. Mao, L., Zhang, L., Gao, N., Li, A.: FeCl3 and acetic acid co-catalyzed hydrolysis of corncob for improving furfural production and lignin removal from residue. Bioresour. Technol. 123, 324–331 (2012)

    Article  CAS  PubMed  Google Scholar 

  15. Gromov, N.V., Medvedeva, T.B., Rodikova, Y.A., Pestunov, A.V., Zhizhina, E.G., Taran, O.P.: The production of formic acid from polysaccharides and biomass via one-pot hydrolysis-oxidation in the presence of Mo-VP heteropoly acid catalyst. J. Siberian Fed. Univ. Chem. 11(1), 56–71 (2018)

    Article  Google Scholar 

  16. Cheng, L., Liu, H., Cui, Y., Xue, N., Ding, W.: Direct conversion of corn cob to formic and acetic acids over nano oxide catalysts. J. energy Chem. 23(1), 43–49 (2014)

    Article  CAS  Google Scholar 

  17. Lehrfeld, J.: Conversion of agricultural residues into cation exchange materials. J. Appl. Polym. Sci. 61(12), 2099–2105 (1996)

    Article  CAS  Google Scholar 

  18. Lai, D., Deng, L., Li, J., Liao, B., Guo, Q., Fu, Y.: Hydrolysis of cellulose into glucose by magnetic solid acid. ChemSusChem. 4(1), 55–58 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Qi, W., Liu, G., He, C., Liu, S., Lu, S., Yue, J., Wang, Q., Wang, Z., Yuan, Z., Hu, J.: An efficient magnetic carbon-based solid acid treatment for corncob saccharification with high selectivity for xylose and enhanced enzymatic digestibility. Green Chem. 21(6), 1292–1304 (2019)

    Article  CAS  Google Scholar 

  20. Van Rhijn, W., De Vos, D., Sels, B., Bossaert, W.: Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions. Chem. Commun. 3, 317–318 (1998)

    Article  Google Scholar 

  21. Khalifa, M.E., Abdelrahman, E.A., Hassanien, M.M., Ibrahim, W.A.: Application of mesoporous silica nanoparticles modified with dibenzoylmethane as a novel composite for efficient removal of cd (II), hg (II), and Cu (II) ions from aqueous media. J. Inorg. Organomet. Polym. Mater. 30(6), 2182–2196 (2020)

    Article  CAS  Google Scholar 

  22. Khazaei, A., Khazaei, M., Nasrollahzadeh, M.: Nano-Fe3O4@ SiO2 supported pd (0) as a magnetically recoverable nanocatalyst for Suzuki coupling reaction in the presence of waste eggshell as low-cost natural base. Tetrahedron. 73(38), 5624–5633 (2017)

    Article  CAS  Google Scholar 

  23. Mohammadi, M., Ghorbani-Choghamarani, A.: Hercynite silica sulfuric acid: a novel inorganic sulfurous solid acid catalyst for one-pot cascade organic transformations. RSC Adv. 12(40), 26023–26041 (2022)

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kiasat, A.R., Davarpanah, J.: Fe3O4@ silica sulfuric acid nanoparticles: an efficient reusable nanomagnetic catalyst as potent solid acid for one-pot solvent-free synthesis of indazolo [2, 1-b] phthalazine-triones and pyrazolo [1, 2-b] phthalazine-diones. J. Mol. Catal. A: Chem0 373, 46–54 (2013)

    Article  CAS  Google Scholar 

  25. Jenie, S.A., Kristiani, A., Kustomo, Simanungkalit, S., Mansur, D.: Preparation of nanobiochar as magnetic solid acid catalyst by pyrolysis-carbonization from oil palm empty fruit bunches. In: AIP Conference Proceedings. AIP Publishing LLC, Melville (2017)

    Google Scholar 

  26. Zhu, Y., Huang, J., Sun, S., Wu, A., Li, H.: Effect of dilute acid and alkali pretreatments on the catalytic performance of bamboo-derived carbonaceous magnetic solid acid. Catalysts. 9(3), 245 (2019)

    Article  Google Scholar 

  27. Wang, Y.-T., Yang, X.-X., Xu, J., Wang, H.-L., Wang, Z.-B., Zhang, L., Wang, S.-L., Liang, J.-L.: Biodiesel production from esterification of oleic acid by a sulfonated magnetic solid acid catalyst. Renew. Energy 139, 688–695 (2019)

    Article  CAS  Google Scholar 

  28. Hu, S.-L., Zeng, Y.-J., Wu, D.-Z., Lou, W.-Y.: A novel magnetic carbon-based solid acid catalyst suitable for efficient hydrolysis of cellulose. Biomass Conv. Bioref. (2021). https://doi.org/10.1007/s13399-020-01240-9

    Article  Google Scholar 

  29. Xiang, Q., Lee, Y.Y., Torget, R.W.: Kinetics of glucose decomposition during dilute-acid hydrolysis of lignocellulosic biomass. In: Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO. Humana Press, Totowa (2004)

    Google Scholar 

  30. Adeogun, A., Agboola, B., Idowu, M., Shittu, T.: ZnCl2 enhanced acid hydrolysis of pretreated corncob for glucose production: kinetics, thermodynamics and optimization analysis. J. Bioresour. Bioprod. 4(3), 149–158 (2019)

    CAS  Google Scholar 

  31. Saeman, J.F.: Kinetics of wood saccharification-hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Industrial Eng. Chem. 37(1), 43–52 (1945)

    Article  CAS  Google Scholar 

  32. Eken-Saraçoğlu, N., Mutlu, S.F., Dilmaç, G., Çavuşoğlu, H.: A comparative kinetic study of acidic hemicellulose hydrolysis in corn cob and sunflower seed hull. Bioresour. Technol. 65(1–2), 29–33 (1998)

    Article  Google Scholar 

  33. Liang, C., Hu, Y., Guo, L., Wu, L., Zhang, W.: Kinetic study of acid hydrolysis of corncobs to levulinic acid. BioResources. 12(2), 4049–4061 (2017)

    Article  CAS  Google Scholar 

  34. Chen, N., Zhang, G., Zhang, P., Tao, X., Wu, Y., Wang, S., Nabi, M.: Rice husk-based solid acid for efficient hydrolysis and saccharification of corncob. Bioresour. Technol. 292, 121915 (2019)

    Article  CAS  PubMed  Google Scholar 

  35. Esfahani, F.K., Zareyee, D., Yousefi, R.: Sulfonated core-shell magnetic nanoparticle (Fe3O4@ SiO2@ PrSO3H) as a highly active and durable protonic acid catalyst; synthesis of coumarin derivatives through Pechmann reaction. ChemCatChem. 6(12), 3333–3337 (2014)

    Article  CAS  Google Scholar 

  36. Safari, J., Zarnegar, Z.: A highly efficient magnetic solid acid catalyst for synthesis of 2, 4, 5-trisubstituted imidazoles under ultrasound irradiation. Ultrason. Sonochem. 20(2), 740–746 (2013)

    Article  CAS  PubMed  Google Scholar 

  37. Quah, R.V., Tan, Y.H., Mubarak, N., Kansedo, J., Khalid, M., Abdullah, E., Abdullah, M.O.: Magnetic biochar derived from waste palm kernel shell for biodiesel production via sulfonation. Waste Manage. 118, 626–636 (2020)

    Article  CAS  Google Scholar 

  38. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of structural carbohydrates and lignin in biomass. Lab. Anal. proced. 1617(1), 1–16 (2008)

    Google Scholar 

  39. Davis, M.W.: A rapid modified method for compositional carbohydrate analysis of lignocellulosics by high pH anion-exchange chromatography with pulsed amperometric detection (HPAEC/PAD). J. Wood Chem. Technol. 18(2), 235–252 (1998)

    Article  CAS  Google Scholar 

  40. Levenspiel, O.: Chemical Reaction Engineering. Wiley, Hoboken (1998)

    Google Scholar 

  41. Hara, M.: Biodiesel production by amorphous carbon bearing SO3H, COOH and phenolic OH groups, a solid Brønsted acid catalyst. Top. Catal. 53(11), 805–810 (2010)

    Article  CAS  Google Scholar 

  42. Kitano, M., Arai, K., Kodama, A., Kousaka, T., Nakajima, K., Hayashi, S., Hara, M.: Preparation of a sulfonated porous carbon catalyst with high specific surface area. Catal. Lett. 131(1), 242–249 (2009)

    Article  CAS  Google Scholar 

  43. Nda-Umar, U.I., Ramli, I., Muhamad, E.N., Taufiq-Yap, Y.H., Azri, N.: Synthesis and characterization of sulfonated carbon catalysts derived from biomass waste and its evaluation in glycerol acetylation. Biomass Convers. Biorefinery 12, 1–16 (2020)

    Google Scholar 

  44. Navarrete, J., Lopez, T., Gomez, R., Figueras, F.: Surface acidity of sulfated TiO2–SiO2 sol-gels. Langmuir 12(18), 4385–4390 (1996)

    Article  CAS  Google Scholar 

  45. Shao, G.N., Sheikh, R., Hilonga, A., Lee, J.E., Park, Y.-H., Kim, H.T.: Biodiesel production by sulfated mesoporous titania–silica catalysts synthesized by the sol–gel process from less expensive precursors. Chem. Eng. J. 215, 600–607 (2013)

    Article  Google Scholar 

  46. Dziembaj, R., Małecka, A., Piwowarska, Z., Bielański, A.: XPS study of polyaniline supported dodecatungstosilicic acid catalyst. J. Mol. Catal. A: Chem. 112(3), 423–430 (1996)

    Article  CAS  Google Scholar 

  47. Hino, M., Kurashige, M., Matsuhashi, H., Arata, K.: The surface structure of sulfated zirconia: studies of XPS and thermal analysis. Thermochim. Acta 441(1), 35–41 (2006)

    Article  CAS  Google Scholar 

  48. Wang, T., Lin, J., Chen, Z., Megharaj, M., Naidu, R.: Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J. Clean. Prod. 83, 413–419 (2014)

    Article  CAS  Google Scholar 

  49. Le, G.T., Arunaditya, K., Panichpol, J., Rodruangnon, T., Thongratkaew, S., Chaipojjana, K., Faungnawakij, K., Charinpanitkul, T.: Sulfonated magnetic carbon nanoparticles from eucalyptus oil as a green and sustainable catalyst for converting fructose to 5-HMF. Catal. Commun. 149, 106229 (2021)

    Article  CAS  Google Scholar 

  50. Wijaya, Y.P., Putra, R.D.D., Widyaya, V.T., Ha, J.-M., Suh, D.J., Kim, C.S.: Comparative study on two-step concentrated acid hydrolysis for the extraction of sugars from lignocellulosic biomass. Bioresour. Technol. 164, 221–231 (2014)

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, H.-J., Fan, X.-G., Qiu, X.-L., Zhang, Q.-X., Wang, W.-Y., Li, S.-X., Deng, L.-H., Koffas, M.A., Wei, D.-S., Yuan, Q.-P.: A novel cleaning process for industrial production of xylose in pilot scale from corncob by using screw-steam-explosive extruder. Bioprocess Biosyst. Eng. 37(12), 2425–2436 (2014)

    Article  CAS  PubMed  Google Scholar 

  52. Xue, J.W., Wang, Z.A.: Study on catalytic hydrolysis of corncob by formic acid. In: advanced materials research. Trans Tech Publ. 560, 321–324 (2012)

    Google Scholar 

  53. Zhang, X., Tan, X., Xu, Y., Wang, W., Ma, L., Qi, W.: Preparation of core-shell structure magnetic carbon-based solid acid and its catalytic performance on hemicellulose in corncobs. BioResources. 11(4), 10014–10029 (2016)

    Article  CAS  Google Scholar 

  54. Wang, C., Yang, G., Zhang, X., Shao, L., Lyu, G., Mao, J., Liu, S., Xu, F.: A kinetic study on the hydrolysis of corncob residues to levulinic acid in the FeCl3–NaCl system. Cellulose. 26(15), 8313–8323 (2019)

    Article  CAS  Google Scholar 

  55. Gurgel, L.V.A., Marabezi, K., Zanbom, M.D., Curvelo, A.A.S.: Dilute acid hydrolysis of sugar cane bagasse at high temperatures: a kinetic study of cellulose saccharification and glucose decomposition. Part I: sulfuric acid as the catalyst. Ind. Eng. Chem. Res. 51(3), 1173–1185 (2012)

    Article  CAS  Google Scholar 

  56. Jiang, Y., Li, X., Wang, X., Meng, L., Wang, H., Peng, G., Wang, X., Mu, X.: Effective saccharification of lignocellulosic biomass over hydrolysis residue derived solid acid under microwave irradiation. Green Chem. 14(8), 2162–2167 (2012)

    Article  CAS  Google Scholar 

  57. Li, X., Zeng, C., Fan, G.: Magnetic RuCo nanoparticles supported on two-dimensional titanium carbide as highly active catalysts for the hydrolysis of ammonia borane. Int. J. Hydrog. Energy. 40(30), 9217–9224 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the inputs of the Soil Science Laboratory Staff and the Chemical Engineering Technologists, Landmark University, Omu-Aran, Nigeria.

Funding

This research did not receive any financial support from funding organizations in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

OF: conceptualization, supervision, original draft preparation, visualization. OO: reviewing and editing, resources. BO: data curation, original draft preparation, reviewing, and editing. AT: supervision. AI: investigation, methodology. OD: investigation, methodology. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Olayomi Abiodun Falowo.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

The results presented in this manuscript are the original works of the authors. This manuscript has not been published in a journal outlet in any form or language. The authors all contributed to the completion of this work. The findings presented were conveyed without any falsification or misrepresentation of data. All references used in this study were properly acknowledged, and all rules guiding a good scientific practice were maintained to ensure professionalism.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 165.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falowo, O.A., Oyekola, O.O., Oladipo, B. et al. Synthesis of Sulfonated Magnetic Nano-catalyst Using Rice Husk Ash for Corncob Hydrolysis: Kinetic and Thermodynamic Study. Waste Biomass Valor 15, 973–987 (2024). https://doi.org/10.1007/s12649-023-02210-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02210-8

Keywords

Navigation