Skip to main content

Advertisement

Log in

Utilization of Chlorella Biomass Grown in Waste Peels-Based Substrate for Simultaneous Production of Biofuel and Value-Added Products Under Microalgal Biorefinery Approach

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Two indigenous microalgae strains Chlorella sorokiniana KMBM_I and Chlorella sorokiniana KMBM_K were tested for their growth and adaptability in the peel wastes. Growth kinetic parameters of the strains were analyzed in varying culture conditions. This study highlights the potential of a bio-based refinery of novel microalgal isolates in producing lipid, bioethanol and pigments etc. The isolates demonstrated significant amount of lipid, protein, carbohydrate and pigments like chlorophyll-a, chlorophyll-b and carotenoids. The spent biomass after extraction of lipids were reused and recycled for sustainable biofuel synthesis. Experimental results indicated that a waste-based refinery could lead to efficient production of value-added products from microalgae utilizing the organic wastes, in turn contributing to the establishment of a ‘green society’. The highest biomass yield of 2.56 ± 0.09 g L−1 and lipid content of 26.34 ± 0.24% was observed when the microalgal strain ‘K’ was cultivated in the mixed peel extract of potato, banana and sweet lime. Also, 7.16 ± 0.43 g L−1 bioethanol was derived from its spent biomass after the lipid extraction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data is available within the article and in its supplementary material.

References

  1. Deeba, F., Kumar, B., Arora, N., Singh, S., Kumar, A., Han, S.S., Negi, Y.S.: Novel bio-based solid acid catalyst derived from waste yeast residue for biodiesel production. Renew. Energy 159, 127–139 (2020)

    Article  Google Scholar 

  2. Maurya, R., Chokshi, K., Ghosh, T., Trivedi, K., Pancha, I., Kubavat, D., Mishra, S., Ghosh, A.: Lipid extracted microalgal biomass residue as a fertilizer substitute for Zea mays L. Front. Plant Sci. 6, 1266 (2016)

    Article  Google Scholar 

  3. Cho, D.H., Ramanan, R., Heo, J., Kang, Z., Kim, B.H., Ahn, C.Y., Oh, H.M., Kim, H.S.: Organic carbon, influent microbial diversity and temperature strongly influence algal diversity and biomass in raceway ponds treating raw municipal wastewater. Bioresour. Technol. 191, 481–487 (2015)

    Article  Google Scholar 

  4. Yen, H.W., Hu, I.C., Chen, C.Y., Ho, S.H., Lee, D.J., Chang, J.S.: Microalgae based biorefinery–from biofuels to natural products. Bioresour. Technol. 135, 166–174 (2013)

    Article  Google Scholar 

  5. Leu, S., Boussiba, S.: Advances in the production of high-value products by microalgae. Ind. Biotechnol. 10(3), 169–183 (2014)

    Article  Google Scholar 

  6. Yan, D., Lu, Y., Chen, Y.F., Wu, Q.: Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour. Technol. 102, 6487–6493 (2011)

    Article  Google Scholar 

  7. Gerardo, M.L., Oatley-Radcliffe, D.L., Lovitt, R.W.: Integration of membrane technology in microalgae biorefineries. J. Membr. Sci. 464, 86–99 (2014)

    Article  Google Scholar 

  8. Chisti, Y.: Biodiesel from microalgae. Biotechnol. Adv. 25, 294–306 (2007)

    Article  Google Scholar 

  9. Malakar, B., Das, D., Mohanty, K.: Utilization of waste peel extract for cultivation of microalgal isolates: a study of lipid productivity and growth kinetics. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-02313-7

    Article  Google Scholar 

  10. Malakar, B., Das, D., Mohanty, K.: Optimization of glucose yield from potato and sweet lime peel waste through different pre-treatment techniques along with enzyme assisted hydrolysis towards liquid biofuel. Renew. Energy 145, 2723–2732 (2020)

    Article  Google Scholar 

  11. Sadiq, I.M., Dalai, S., Chandrasekaran, N., Mukherjee, A.: Ecotoxicity study of Titania (TiO2) NPs on two microalgae species Scenedesmus sp. and Chlorella sp. Ecotoxicol. Environ. Saf. 74, 1180–1187 (2011)

    Article  Google Scholar 

  12. Pandey, A., Srivastava, S., Kumar, S.: Isolation, screening and comprehensive characterization of candidate microalgae for biofuel feedstock production and dairy effluent treatment: a sustainable approach. Bioresour. Technol. 293, 198 (2019)

    Article  Google Scholar 

  13. National renewable energy laboratory (NREL) (2008).

  14. Artemio, C.P., Maginot, N.H., Serafin, C.U., Rahim, F.P., Guadalupe, R.Q.J., Fermin, C.M.: Physical, mechanical and energy characterization of wood pellets obtained from three common tropical species. PeerJ 6, 5504 (2018)

    Article  Google Scholar 

  15. DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric Method for determination of sugars and related substances. Anal. Chem. 28(3), 350–356 (1956)

    Article  Google Scholar 

  16. Becker, E.W.: Microalgae: biotechnology and microbiology. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  17. Pruvost, J., Van Vooren, G., Le Gouic, B., Couzinet-Mossion, A., Legrand, J.: Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresour. Technol. 102, 150–158 (2011)

    Article  Google Scholar 

  18. Lichtenthaler, H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350–882 (1987)

    Article  Google Scholar 

  19. Malakar, B., Das, D., Mohanty, K.: Evaluation of banana peel hydrolysate as alternate and cheaper growth medium for growth of microalgae Chlorella sorokiniana. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03106-8

  20. Velazquez-Lucio, J., Colla, L.M., Rodríguez-Jasso, R.M., Sáenz-Galindo, A., Cervantes-Cisneros, D.E., Aguilar, C.N., Fernandes, B.D., Ruiz, H.A.: Microalgal biomass pretreatment for bioethanol production: a review. Biofuel Res. J. 17, 780–791 (2018)

    Article  Google Scholar 

  21. Chakravarthy, K., Veeramuthu, A., Senthil, C., Sailendra, B., Ramasamy, R.: Pretreatment of lipid extracted Botryococcus braunii spent biomass for bioethanol production. Int. J. Curr. Biotechnol. 2(1), 11–18 (2014)

    Google Scholar 

  22. Pilone, G.J.: Determination of ethanol in wine by titrimetric and spectrophotometric dichromate methods: collaborative study. J. Assoc. Off. Anal. Chem. 68(2), 188–190 (1985)

    Google Scholar 

  23. Lee, Y.K., Ding, S.K., Hoe, C.H., Low, C.S.: Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor. J. Appl. Phycol 8(2), 163–169 (1996)

    Article  Google Scholar 

  24. Shi, X.M., Liu, H.J., Zhang, X.W., Chen, F.: Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochem. 34(4), 341–347 (1999)

    Article  Google Scholar 

  25. Chokshi, K., Pancha, I., Ghosh, A., Mishra, S.: Microalgal biomass generation by phycoremediation of dairy industry wastewater: an integrated approach towards sustainable biofuel production. Bioresour. Technol. 221, 455–460 (2016)

    Article  Google Scholar 

  26. Mu, J., Li, S., Chen, D., Xu, H., Han, F., Feng, B., Li, Y.: Enhanced biomass and oil production from sugarcane bagasse hydrolysate (SBH) by heterotrophic oleaginous microalga Chlorella protothecoides. Bioresour. Technol. 185, 99–105 (2015)

    Article  Google Scholar 

  27. Pleissner, D., Lau, K.Y., Schneider, R., Venus, J., Lin, C.S.K.: Fatty acid feedstock preparation and lactic acid production as integrated processes in mixed restaurant food and bakery wastes treatment. Food Res. Int. 73, 52–61 (2015)

    Article  Google Scholar 

  28. Lau, K.Y., Pleissner, D., Lin, C.S.K.: Recycling of food waste as nutrients in Chlorella vulgaris cultivation. Bioresour. Technol. 170, 144–151 (2014)

    Article  Google Scholar 

  29. Wang, X., Zhang, M.-M., Sun, Z., Liu, S.-F., Qin, Z.-H., Mou, J.-H., Zhou, Z.-G., Lin, C.S.K.: Sustainable lipid and lutein production from Chlorella mixotrophic fermentation by food waste hydrolysate. J. Hazard. Mater. 400, 123258 (2020)

    Article  Google Scholar 

  30. Miazek, K., Remacle, C., Richel, A., Goffin, D.: Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production. Bioresour. Technol. 230, 122–131 (2017)

    Article  Google Scholar 

  31. Arif, M., Li, Y., El-Dalatony, M.M., Zhang, C., Li, X., Salama, E.-S.: A complete characterization of microalgal biomass through FTIR/TGA/CHNS analysis: an approach for biofuel generation and nutrients removal. Renew. Energy 163, 1973–1982 (2021)

    Article  Google Scholar 

  32. Phukan, M.M., Chutia, R.S., Konwar, B.K., Kataki, R.: Microalgae Chlorella as a potential bio-energy feedstock. Appl. Energy 88, 3307–3312 (2011)

    Article  Google Scholar 

  33. Yew, G.Y., Khoo, K.S., Chia, W.Y., Ho, Y.C., Law, C.L., Leong, H.Y., Show, P.L.: A novel lipids recovery strategy for biofuels generation on microalgae Chlorella cultivation with waste molasses. J. Water Process Eng. 38, 101665 (2020)

    Article  Google Scholar 

  34. Jaiswal, K.K., Kumar, V., Vlaskin, M.S., Nanda, M.: Impact of pyrene (polycyclic aromatic hydrocarbons) pollutant on metabolites and lipid induction in microalgae Chlorella sorokiniana (UUIND6) to produce renewable biodiesel. Chemosphere 285, 131482 (2021)

    Article  Google Scholar 

  35. Mecozzi, M., Pietroletti, M., Tornambè, A.: Molecular and structural characteristics in toxic algae cultures of Ostreopsis ovata and Ostreopsis spp. evidenced by FTIR and FTNIR spectroscopy. Spectrochim. Acta Part A 78, 1572–1580 (2011)

    Article  Google Scholar 

  36. Olasehinde, T.A., Odjadjare, E.C., Mabinya, L.V., Olaniran, A.O., Okoh, A.I.: Chlorella sorokiniana and Chlorella minutissima exhibit antioxidant potentials, inhibit cholinesterases and modulate disaggregation of β-amyloid fibrils. Electron. J. Biotechnol. 40, 1–9 (2019)

    Article  Google Scholar 

  37. Olia, M.S.J., Azin, M., Moazami, N.: Application of a statistical design to evaluate bioethanol production from Chlorella S4 biomass after acid—thermal pretreatment. Renew. Energy 182, 60–68 (2022)

    Article  Google Scholar 

  38. Amit, Ghosh, U.K.: Utilization of kinnow peel extract with different wastewaters for cultivation of microalgae for potential biodiesel production. J. Environ. Chem. Eng. 7, 1135 (2019)

    Article  Google Scholar 

  39. Haske-Cornelius, O., Vu, T., Schmiedhofer, C., Vielnascher, R., Dielacher, M., Sachs, V., Grasmug, M., Kromus, S., Guebitz, G.M.: Cultivation of heterotrophic algae on enzymatically hydrolyzed municipal food waste. Algal Res. 50, 101993 (2020)

    Article  Google Scholar 

  40. Park, W.K., Moon, M., Kwak, M.S., Jeon, S., Choi, G.G., Yang, J.W., Lee, B.: Use of orange peel extract for mixotrophic cultivation of Chlorella vulgaris: increased production of biomass and FAMEs. Bioresour. Technol. 171, 343–349 (2014)

    Article  Google Scholar 

  41. Kamal, S.M., El-Sayed, A.B., Hassan, A.A., El-Shazly, H.A.M., Ibrahim, M.T.: Use of Okara waste for algae nutrition. Arab Univ. J. Agric. Sci. 25(2), 271–279 (2017)

    Google Scholar 

  42. Liang, Y., Sarkany, N., Cui, Y., Yesuf, J., Trushenski, J., Blackburn, J.W.: Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Biores. Technol. 101, 3623–3627 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Central Instrument Facility (CIF), IIT Guwahati for the FESEM and EDX analysis and the Guwahati Biotech Park for the CHN analysis.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by BM. The first draft of the manuscript was written by BM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kaustubha Mohanty.

Ethics declarations

Conflict of interest

The authors declare no known competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malakar, B., Das, D. & Mohanty, K. Utilization of Chlorella Biomass Grown in Waste Peels-Based Substrate for Simultaneous Production of Biofuel and Value-Added Products Under Microalgal Biorefinery Approach. Waste Biomass Valor 14, 3589–3601 (2023). https://doi.org/10.1007/s12649-023-02058-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02058-y

Keywords

Navigation