Skip to main content
Log in

Alternative Nitrogen Source for Producing Crude Extracted IAA and Suitable Method for Enhancing the Germination of Jerusalem Artichoke

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Auxin is a useful compound which has an effect on plant root and shoot elongation. Thus, the aim of this study was to determine a suitable medium formula to produce indole-3-acetic acid (IAA). Adding various nitrogen sources such as beef extract, chicken manure solution, soybean residue, yeast extract, soybean powder and casein, supplemented with and without inducible substances such as tryptophan, optimized incubation temperature. IAA content in crude extraction was detected by TLC chromatography. Moreover, both the optimum concentration of IAA crude and the most suitable method (spreading or dipping) for application on Jerusalem artichoke were investigated. Five isolates revealed positive results on IAA product. The alternative medium for IAA production in the formula that consisted of soybean residue showed significantly highest contents of substances like IAA product when the rhizobacteria was cultured at 25 and 30 °C. Sixty µg/ml of crude extracted IAA was the optimum concentration, promoting Jerusalem artichoke (Helianthus tuberosus L.), growth with 100% germination. In addition, the root and shoot lengths exhibited were 3.79 and 7.14 cm, respectively. Dipping seed method was the most effective approach for encouraging seedling development, with a percentage of germination of 86.67 and root and shoot lengths of 4.48 and 5.39 cm, respectively. Our results demonstrated that a simple approach and appropriate concentration of crude extracted IAA could boost Jerusalem artichoke seedling development.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Yousef, M.H.N.: Capability of plant growth-promoting rhizobacteria (PGPR) for producing indole acetic acid (IAA) under extreme conditions. Eur. J. Biol. Res. (2018). https://doi.org/10.5281/zenodo.1412796

    Article  Google Scholar 

  2. Atia, I., Shahida, H.: Auxin producing Pseudomonas Strains: biological candidates to modulate the growth of Triticum aestivum beneficially. Am. J. Plant. Sci. (2013). https://doi.org/10.4236/ajps.2013.49206

    Article  Google Scholar 

  3. Kamilova, F., Validov, S., Azarova, T., Mulders, I., Lugtenberg, B.: Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ. Microbiol. (2015). https://doi.org/10.1111/j.1462-2920.2005.00889.x

    Article  Google Scholar 

  4. Haas, D., Défago, G.: Biological control of soil-borne pathogens by fluorescent Pseudomonads. Nat. Rev. Microbiol. (2005). https://doi.org/10.1038/nrmicro1129

    Article  Google Scholar 

  5. Wagi, S., Ahmed, A.: Bacillus spp.: potent microfactories of bacterial IAA. PeerJ. (2019). https://doi.org/10.7717/peerj.7258

    Article  Google Scholar 

  6. Fu, S.F., Wei, J.Y., Chen, H.W., Liu, Y.Y., Lu, H.Y., Chou, J.Y.: Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant. Signal. Behav. (2015). https://doi.org/10.1080/15592324.2015.1048052

    Article  Google Scholar 

  7. Egamberdieva, D.: Indole-acetic acid production by root associated bacteria and its role in plant growth and development. In: Keller, A.H., Fallon, M.D. (eds.) Soil Nutrients, pp. 1–14. Nova Science Publishers, Hauppauge (2012)

  8. Spaepen, S., Vanderleyden, J.: Auxin and plant-microbe interactions. Cold Spring Harb. Protoc. (2011). https://doi.org/10.1101/cshperspect.a001438

    Article  Google Scholar 

  9. Gutierrez, C.K., Matsui, G.Y., Lincoln, D.E., Lovell, C.R.: Production of the phytohormone indole-3-Acetic acid by Estuarine species of the Genus Vibrio. Appl. Environ. Microbiol. (2009). https://doi.org/10.1128/AEM.02072-08

    Article  Google Scholar 

  10. Swain, M.R., Naskar, S.K., Ray, R.C.: Indole-3-acetic acid production and effect on sprouting of Yam (Dioscorea rotundata L.). Pol. J. Microbiol. 2, 103–110 (2007)

    Google Scholar 

  11. Chanram, R., Trakulnaleamsai, S., Maneeboon, T., Soiklom, S.: Optimization of indole-3-acetic acid (IAA) production by Bacillus spp. isolated from alkaline soil. NRCT (2017). https://doi.org/10.14457/KU.res.2017.146

    Article  Google Scholar 

  12. Morr, C.V.: Nitrogen conversion factors for several soybean protein products. J. Food Sci. (2006). https://doi.org/10.1111/j.1365-2621.1981.tb04175.x

    Article  Google Scholar 

  13. Almaz, M., Halim, R.A., Yusoff, M.M., Wahid, S.A.: Decomposition and nitrogen mineralization of individual and mixed maize and soybean residue. MAYFEB J. Agric. Sci. 2, 28–45 (2016)

    Google Scholar 

  14. Thimann, K.V.: Auxins and the inhibition of plant growth. Biol. Rev. 14, 314–337 (1939)

    Article  Google Scholar 

  15. Pimsaen, W., Jogloy, S., Suriharn, B., Kesmala, T., Pensuk, V., Patanothai, A.: Genotype by environment (G × E) interaction for yield component of Jerusalem artichoke (Helianthus tuberosus L.). Asian J. Plant. Sci. (2010). https://doi.org/10.3923/ajps.2010.11.19

    Article  Google Scholar 

  16. Boiero, L., Perrig, D., Masciarelli, O., Penna, C., Cassán, F., Luna, V.: Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl. Microbiol. Biotechnol. (2007). https://doi.org/10.1007/s00253-006-0731-9

    Article  Google Scholar 

  17. Shrivastava, U.P., Kumar, A.: A simple and rapid plate assay for the screening of indole-3-acetic acid (IAA) producing microorganisms. Int. J. Appl. Biol. 2, 120–123 (2011)

    Google Scholar 

  18. Senthil, N., Elangovan, K., Rajkumar, S., Bavya, M.: Studies on Indole acetic acid production and phosphate solubilization from forest soil bacteria. BTAIJ 4, 212–216 (2010)

  19. Sritongon, K., Mongkolthanaruk, W., Boonlue, S., Jogloy, S., Puangbut, D., Riddech, N.: Rhizobacterial candidates isolated from Jerusalem Artichoke (Helianthus tuberosus L.) rhizosphere for host plant growth promotion. Chiang Mai J. Sci. 44, 83–93 (2017)

    Google Scholar 

  20. Wu, S.C., Cao, Z.H., Li, Z.G., Cheung, K.C., Wong, M.H.: Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth. Geoderma (2005). https://doi.org/10.1016/j.geoderma.2004.07.003

    Article  Google Scholar 

  21. Teale, W.D., Paponov, I.A., Palme, K.: Auxin in action: signaling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell. Biol. (2006). https://doi.org/10.1038/nrm2020

    Article  Google Scholar 

  22. Dar, G.H.H., Sofi, S., Padder, S.A., Kabli, A.: Molecular characterization of rhizobacteria isolated from walnut (Juglans regia) rhizosphere in Western Himalayas and assessment of their plant growth promoting activities. Biodivers. J. (2018). https://doi.org/10.13057/biodiv/d190245

    Article  Google Scholar 

  23. Namwongsa, J., Jogloy, S., Vorasoot, N., Boonlue, S., Riddech, N., Mongkolthanaruk, W.: Endophytic bacteria improve root traits, biomass and yield of Helianthus tuberosus L. under normal and deficit water conditions. J. Microbiol. Biotechnol. (2019). https://doi.org/10.4014/jmb.1903.03062

    Article  Google Scholar 

  24. Ansari, F.A., Jabeen, M., Ahmad, A.: Pseudomonas azotoformans FAP5, a novel biofilm-forming PGPR strain, alleviates drought stress in wheat plant. Int. J. Environ. Sci. (2021). https://doi.org/10.1007/s13762-020-03045-9

    Article  Google Scholar 

  25. Jin, S., Liu, L., Liu, Z., Long, H., Shao, H., Chen, J.: Characterization of marine Pseudomonas spp. antagonist towards three tuber-rotting fungi from Jerusalem artichoke, a new industrial crop. Ind. Crops Prod. 43, 556–561 (2013)

    Article  Google Scholar 

  26. Sarin, S., Prombunchachai, T., Nakaew, N., Chidburee, A.: Isolation of indole acetic acid producing pink pigmented facultative methylotrophs (PPFMs) from Murdannia loriformis. Naresuan Univ. J. 21, 14–24 (2013)

    Google Scholar 

  27. Ahmad, E., Sharma, S.K., Sharma, P.K.: Deciphering operation of tryptophan independent pathway in high indole – 3-acetic acid (IAA) producing Micrococcus aloeverae DCB-20. FEMS Microbiol. Lett. (2020). https://doi.org/10.1093/femsle/fnaa190

    Article  Google Scholar 

  28. Mohite, B.: Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Soil. Sci. Plant. Nutr. (2013). https://doi.org/10.4067/S0718-95162013005000051

    Article  Google Scholar 

  29. Ma, X., Hu, X., Liu, L., Li, X., Ma, Z., Chen, J., Wei, X.: The quality changes and microflora analysis of commercial instant soya milk. Food Sci. Nutr. (2016). https://doi.org/10.1002/fsn3.371

    Article  Google Scholar 

  30. Swallah, M.S., Fan, H., Wang, S., Yu, H., Piao, C.: Prebiotic impacts of soybean residue (Okara) on Eubiosis/Dysbiosis condition of the gut and the possible effects on liver and kidney functions. Molecules (2021). https://doi.org/10.3390/molecules26020326

    Article  Google Scholar 

  31. Li, B., Qiao, M., Lu, F.: Composition, nutrition, and utilization of Okara (soybean residue). Food Rev. Int. (2011). https://doi.org/10.1080/87559129.2011.595023

    Article  Google Scholar 

  32. Amburgh, M.V., Ross, D., Ortega, A.F., LaPierre, A.: Quantitation of amino acids in soy flour, fried cow’s milk powder, and corn silage by Triple quadrupole LC/MS/MS. Agilent Technologies, Santa Clara (2021). https://www.agilent.com/cs/library/applications/application-amino-acids-soy-flour-6470-triple-quadrupole-5994-3044en-agilent.pdf Accessed 20 Sept 2022

  33. Ichikawa, N., Ng, S.L., Makino, S., Goh, L.L., Lim, J.Y., Ferdinandus., Sasaki, H., Shibata, S., Lee, K.C.: Solid-state fermented Okara with Aspergillus spp. improves lipid metabolism and high-fat diet induced obesity. Metabolites (2022). https://doi.org/10.3390/metabo12030198

  34. Naveed, M., Qureshi, A.M., Ahmed, Z.Z., Hussain, B.M., Sessitsch, A., Mitter, B.: l-Tryptophan-dependent biosynthesis of indole-3-acetic acid (IAA) improves plant growth and colonization of maize by Burkholderia phytofirmans PsJN. Ann. Microbiol. (2015). https://doi.org/10.1007/s13213-014-0976-y

    Article  Google Scholar 

  35. Liu, Y.K., Kuo, H.C., Lai, C.H., Chou, C.C.: Single amino acid utilization for bacterial categorization. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-69686-5

    Article  Google Scholar 

  36. Adour, L., Couriol, C., Amrane, A.: Differentiation between amino acids used as carbon and energy sources during growth of Geotrichum candidum Geo17. Food Technol. Biotechnol. 43, 85–89 (2005)

    Google Scholar 

  37. Chandra, S., Askari, K., Kumari, M.: Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth. Genet. Eng. Biotechnol. (2018). https://doi.org/10.1016/j.jgeb.2018.09.001

    Article  Google Scholar 

  38. Aldesuquy, H.S., Mansour, F., Abo-Hamed, S.A.: Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiol. (1998). https://doi.org/10.1007/BF02820792

    Article  Google Scholar 

  39. Klayraung, S., Niamsup, P., Chuenbarn, T., Wongkattiya, N.: Study on bioactive compounds from chlorate reducing bacteria for agricultural uses. Maejo University. (2014). https://tarr.arda.or.th/preview/item/Yo1CWEQzcIbxnJ65J6HAx. Accessed 17 July 2021

  40. Klayraung, S., Niamsup, P., Chuenbarn, T., Ngarmsom, A.: Indole-3-acetic acid production by Chlorate degrading bacteria. Maejo University, Chiang Mai (2015). https://erp.mju.ac.th/openFile.aspx?id=MTc2MDQx. Accessed 8 July 2021

  41. Zolman, B.K., Yoder, A., Bartel, B.: Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes. Genetics (2000). https://doi.org/10.1093/genetics/156.3.1323

    Article  Google Scholar 

  42. Eslamboly, E.L., Ahmed, A.: Effect of watermelon propagation by cuttings on vegetative growth, yield and fruit quality. Egypt. J. Agric. Res. (2014). https://doi.org/10.21608/EJAR.2014.155191

    Article  Google Scholar 

  43. Scagel, C.F., Linderman, R.G.: Modification of root IAA concentration, tree growth, and survival by application of plant growth regulating substances to container-grown conifers. New. For. (2001). https://doi.org/10.1023/A:1011869411552

    Article  Google Scholar 

  44. Montri, N., Khoikeaw, K., Saenphakdi, S., Junpatiw, A.: Effect of auxins on seeds germination and seedlings development of Stemona curtisii Hook. f. in vitro. Khon Kaen Agric. J. 42, 335–340 (2014)

    Google Scholar 

  45. Chanchula, N., Taychasinpitak, T., Piriyaphattarakit, A.: Influence of auxin on rooting and growing of ornamental sweet potato. NRCT (2017). https://doi.org/10.14456/tjst.2017.40

    Article  Google Scholar 

  46. Ogwu, M.C.: Effects of indole-3-acetic acid on the growth parameters of Citrullus lanatus (Thunberg) Matsum and Nakai. Momona Ethiop. J. Sci. (2018). https://doi.org/10.4314/mejs.v10i1.8

    Article  Google Scholar 

  47. Rhoades, J.: Jerusalem Artichoke Care: Learn how to grow a Jerusalem Artichoke. Gardening Know How (2021). https://www.gardeningknowhow.com/edible/vegetables/jerusalem-artichokes/growing-jerusalem-artichokes.htm. Accessed 8 Oct 2021

Download references

Acknowledgements

The author would like to gratefully acknowledge Department of Microbiology, Faculty of Science, Khon Kaen University. The authors acknowledge to Mr. Matthew Graham Savage for proofing this manuscript.

Funding

This work was supported by Office of National Higher Education Science Research and Innovation Policy Council under Program Management Unit - B (Project B05F630053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuntavun Riddech.

Ethics declarations

Conflict of interest

No conflicts of interest associated with this publication. As corresponding author, I confirm that the manuscript has been read and approved for submission by all the named authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onrit, N., Boonlue, S., Mongkolthanaruk, W. et al. Alternative Nitrogen Source for Producing Crude Extracted IAA and Suitable Method for Enhancing the Germination of Jerusalem Artichoke. Waste Biomass Valor 14, 1497–1508 (2023). https://doi.org/10.1007/s12649-022-01970-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01970-z

Keywords

Navigation