Skip to main content

Advertisement

Log in

Radiation-Assisted Hydrolysis of Lignocellulosic Biomass. Mechanistic Study

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

High-energy irradiation, by γ-rays or electron beam, is used as a one-step penetrating pretreatment without heating nor chemicals before the enzymatic hydrolysis to convert the apple tree and pine biomass into glucose. The specific properties of various types of enzymes, isolated or mixed, are exploited to let conclude on the diverse effects of the irradiation. A complete conversion of the cellulose into glucose by the cellulase is reached after one MGy irradiation dose and none without irradiation, showing that all the cellulose bonds with lignin and hemicellulose are radiolytically broken by the irradiation pretreatment. The difference between the hydrolysis without and with isolated β-glucosidase (BG) indicates that also 60% of the free cellulose is depolymerized by the irradiation into oligosaccharides and cellobiose, finally hydrolyzed into glucose by the enzyme. The other part of crystalline and amorphous cellulose is hydrolyzed by the other enzymes contained in the cellulase, the cellobiohydrolase (CBH) and the endo 1,4 β-glucanase (EG), respectively. The small difference in glucose formation between the effects of the cellulase and of the mixture of endo 1,4 β-glucanase with β-glucosidase corresponds to the crystalline cellulose not yet amorphized by the irradiation. The specific enzymes efficiencies are studied not only to optimize the production of the hydrosoluble glucose, but also to disentangle quantitatively the overall radiolytic pretreatment/hydrolysis mechanism.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. Sun, Y., Jiayang, C.: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Techn. 83, 1–11 (2002). https://doi.org/10.1016/S0960-8524(01)00212-7

    Article  Google Scholar 

  2. Driscoll, M.S., Stipanovic, A.J., Cheng, K., Barber, V.A., Manning, M., Smith, J.L., Sundar, S.: Ionizing radiation and a wood-based biorefinery. Radiat. Phys. Chem. 94, 217–220 (2014)

    Article  Google Scholar 

  3. Torun, M.: Chapter 19—Radiation pretreatment of biomass. In: Sun, Y., Chmielewski, A.G. (eds.) Applications of ionizing radiation in materials processing, pp. 447–460. Warshaw, Institute of Nuclear Chemistry and Technology (2017)

    Google Scholar 

  4. Arumugam, A., Malolan, V.V., Ponnusami, V.: Contemporary pretreatment strategies for bioethanol production from corncobs: a comprehensive review. Waste Biomass Valoriz. 12, 577–612 (2021). https://doi.org/10.1007/s12649-020-00983-w

    Article  Google Scholar 

  5. Luck, F.: L’engagement dans la biomasse vu par Total. L’Act Chim. 381, 34–39 (2014)

    Google Scholar 

  6. Kristiani, A., Effendi, N., Aristiawan, Y., Aulia, F., Sudiyani, Y.: Effect of combining chemical and irradiation pretreatment process to characteristic of oil palm’s empty fruit bunches as raw material for second generation bioethanol. Energy Procedia 68, 195–204 (2015)

    Article  Google Scholar 

  7. Himmel, M.E., Ding, S., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., Foust, T.D.: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315, 804–807 (2007)

    Article  Google Scholar 

  8. Tissot, C., Grdanovska, S., Barkatt, A., Silverman, J., Al-Sheikhly, M.: On the mechanisms of the radiation-induced degradation of cellulosic substances. Radiat. Phys. Chem. 84, 185–190 (2013)

    Article  Google Scholar 

  9. Himmel, M.E., Baker, J.O., Overend, R.P., et al. Enzymatic conversion of biomass for fuels production. In: American Chemical Society Symposium Series, vol. 566, pp. 292-324. Washington, DC (1994). http.://doi.org/0097-6156/94/0566-0372$08.00/0

  10. Wertz, J.: Prétraitements de la biomasse lignocellulosique, pp. 1–58. ValBiom. (2016)

  11. Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P.: Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48, 3713–3729 (2009)

    Article  Google Scholar 

  12. Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K.B., Ramakrishnan, S.: Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res. (2011). https://doi.org/10.4061/2011/787532

    Article  Google Scholar 

  13. Naresh Kumar, M., Ravikumar, R., Thenmozhi, S., Ranjith Kumar, M., Kirupa Shankar, M.: Choice of pretreatment technology for sustainable production of bioethanol from lignocellulosic biomass: bottle necks and recommendations. Waste Biomass Valoriz 10, 1693–1709 (2019). https://doi.org/10.1007/s12649-017-0177-6

    Article  Google Scholar 

  14. Ranjithkumar, M., Ravikumar, R., Sankar, M.K., Kumar, M.N., Thanabal, V.: An effective conversion of cotton waste biomass to ethanol: a critical review on pretreatment processes. Waste Biomass valoriz. 8, 57–68 (2017). https://doi.org/10.1007/s12649-016-9563-8

    Article  Google Scholar 

  15. Zheng, Y., Pan, Z., Zhang, R.: Overview of biomass pretreatment for cellulosic ethanol production. Int. J. Agric. Biol. Eng. 2, 51–68 (2009). https://doi.org/10.3965/j.issn.1934-6344.2009.03.051-068

    Article  Google Scholar 

  16. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 96, 673–686 (2005)

    Article  Google Scholar 

  17. Jacquet, N., Vanderghem, C., Blecker, C., Paquot, M.: La steam explosion: application en tant que prétraitement de la matière lignocellulosique.BASE [En ligne], 14, (2010). https://popups.uliege.be/1780-4507/index.php?id=6226

  18. Loustau-Cazalet, C.: Relation morphologie/réactivité des substrats lignocellulosiques: impact du prétraitement par explosion à la vapeur (PhD, Université de Grenoble Alpes (ComUE)) (2018)

  19. Ziegler-Devin, I., Chrusciel, L., Brosse, N.: Steam explosion pretreatment of lignocellulosic biomass: a mini-review of theorical and experimental approaches. Front. Chem. (2021). https://doi.org/10.3389/fchem.2021.705358

    Article  Google Scholar 

  20. Duque, A., Manzanares, P., Ballesteros, I., Ballesteros, M.: Steam explosion as lignocellulosic biomass pretreatment. In: Mussatto, S.I. (ed.) Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery, pp. 349–368. Elsevier, Amsterdam (2016)

    Chapter  Google Scholar 

  21. Haouache, S., Karam, A., Chave, T., Clarhaut, J., Amaniampong, P.N., Fernandez, J.M.G., Jérôme, F.: Selective radical depolymerization of cellulose to glucose induced by high frequency ultrasound. Chem. Sci. 11, 2664–2669 (2020)

    Article  Google Scholar 

  22. Saini, A., Aggarwal, N.K., Sharma, A., Yadav, A.: Prospects for irradiation in cellulosic ethanol production. Biotechnol. Res. Int. (2015). https://doi.org/10.1155/2015/157139

    Article  Google Scholar 

  23. Ardica, S., Calderaro, E., Cappadona, C.: Radiation pretreatments of cellulose materials for the enhancement of enzymatic hydrolysis—II. Wood chips, paper, grain straw, hay, kapok. Radiat. Phys. Chem. 26, 701–704 (1977). https://doi.org/10.1016/0146-5724(85)90111-6

    Article  Google Scholar 

  24. Joe, M.-H., et al.: Microalgal lipid production using the hydrolysates of rice straw pretreated with gamma irradiation and alkali solution. Biotechnol. Biofuels 8(1), 1–9 (2015). https://doi.org/10.1186/s13068-015-0308-x

    Article  Google Scholar 

  25. Al-Masri, M.R., Zarkawi, M.: Effects of gamma irradiation on chemical compositions of some agricultural residues. Radiat. Phys. Chem. 433, 257–260 (1994)

    Article  Google Scholar 

  26. Blouin, F.A., Arthur, J.C., Jr.: Degration of cotton in an oxygen atmosphere by gamma radiation. J. Chem. Eng. Data 5, 470–475 (1960)

    Article  Google Scholar 

  27. Kasprzyk, H., Wichlacz, K., Borysiak, S.: The effect of gamma radiation on the supramolecular structure of pine wood cellulose in situ revealed by X-ray diffraction. Electron. J. Pol. Agric. Univ. 7, 1–2 (2004)

    Google Scholar 

  28. Helal, G.A.: Bioconversion of straw into improved fodder: preliminary treatment of rice straw using mechanical, chemical and/or gamma irradiation. Mycobiol 34(1), 14–21 (2006). https://doi.org/10.4489/MYCO.2006.34.1.014

    Article  Google Scholar 

  29. Subekti, N., et al.: Biodegradability of four wood species treated by gamma-irradiation and its applicability to the termite management. In: AIP Conference Proceedings. AIP Publishing LLC (2018)

  30. Khan, A.W., Labrie, J.P., McKeown, J.: Effect of electron-beam irradiation pretreatment on the enzymatic hydrolysis of softwood. Biotechnol. Bioeng. 28, 1449–1453 (1986). https://doi.org/10.1002/bit.260280921

    Article  Google Scholar 

  31. Grabowski, C.: The impact of electron beam pretreatment on the fermentation of wood-based sugars.PhD, Suny College of Environmental Science and Forestry, (2015). https://digitalcommons.esf.edu/honors/63

  32. Schnabel, T., et al.: Changes in mechanical and chemical wood properties by electron beam irradiation. Appl. Surf. Sci. 332, 704–709 (2015)

    Article  Google Scholar 

  33. LaVerne, J.A., Driscoll, M.S., Al-Sheikhly, M.: Radiation stability of lignocellulosic material components. Rad Phys. Chem. 171, 108716 (2020). https://doi.org/10.1016/j.radphyschem.2020.108716

    Article  Google Scholar 

  34. Ershov, B.G.: Radiation-chemical degradation of cellulose and other polysaccharides. Russ Chem. Rev. 67, 315–334 (1998)

    Article  Google Scholar 

  35. Ponomarev, A.V., Ershov, B.G.: Radiation-induced degradation of cellulose: from partial depolymerization to complete self-disassembly. Radiat. Phys. Chem. 152, 63–68 (2018)

    Article  Google Scholar 

  36. Belloni, J., Monard, H., Gobert, F., Larbre, J.-P., Demarque, A., De Waele, V., Lampre, I., Marignier, J.-L., Mostafavi, M., Bourdon, J.C., Bernard, M., Borie, H., Garvey, T., Jacquemard, B., Leblond, B., Lepercq, P., Omeich, M., Roch, M., Rodier, J., Roux, R.: ELYSE: A picosecond electron accelerator for pulse radiolysis research. Nucl. Instrum. Meth Phys. Res. Sect. A 539, 527–539 (2005)

    Article  Google Scholar 

  37. Marignier, J.-L., De Waele, V., Monard, H., Gobert, F., Larbre, J.-P., Demarque, A., Mostafavi, M., Belloni, J.: Time-resolved spectroscopy at the picosecond laser-triggered electron accelerator ELYSE. Radiat. Phys. Chem. 75, 1024–1033 (2006)

    Article  Google Scholar 

  38. Beguin, P.: Molecular biology of cellulose degradation. Annu. Rev. Microbiol. 44(1), 219–248 (1990). https://doi.org/10.1146/annurev.mi.44.100190.001251

    Article  Google Scholar 

  39. Bhat, M.K., Bhat, S.: Cellulose degrading enzymes and their potential industrial applications. Biotechnol. Adv. 15(3–4), 583–620 (1997). https://doi.org/10.1016/S0734-9750(97)00006-2

    Article  Google Scholar 

  40. Gusakov, A.V.: Alternatives to Trichoderma reesei in biofuel production. Trends in Biotechnol. 29, 419–425 (2011)

    Article  Google Scholar 

  41. Claisse, N.: Préparation et modification d’oligosaccharides de cellulose par chimie douce bio-inspirée.PhD. Univ. Grenoble(2012). https://tel.archives-ouvertes.fr/tel-00849149

  42. Singhania, R.R., Patel, A.K., Sukumaran, R.K., Larroche, C., Pandey, A.: Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour. Technol. 127, 500–507 (2013). https://doi.org/10.1016/j.biortech.2012.09.012

    Article  Google Scholar 

  43. Soleimani, S., Ranaei-Siadat, S.O.: Preparation and optimization of cellulase cocktail to improve the bioethanol process. Biofuels 8, 291–296 (2017). https://doi.org/10.1080/17597269.2016.1224293

    Article  Google Scholar 

  44. Karthik Periyasamy, K.: Bioethanol production from lignocellulosic biomass using immobilized cellulolytic enzymes. (PhD, Université de Grenoble Alpes) (2018). https://tel.archives-ouvertes.fr/tel-01923141/document

  45. Eloutassi, N., Louaste, B., Boudine, L., Remmal, A.: Valorisation de la biomasse lignocellulosique pour la production de bioéthanol de deuxième génération. J. Ren. Ener 17, 600–609 (2014)

    Google Scholar 

  46. Cameleyre, X.: Intégration Prétraitement Biotransformation.https://www.researchgate.net/publication/343761591

  47. Amidon, T.E., Bujanovic, B., Liu, S., Howard, J.R.: Commercializing biorefinery technology: A case for the multi-product pathway to a viable biorefinery. Forests 2, 929–947 (2011). https://doi.org/10.3390/f2040929

    Article  Google Scholar 

  48. Khandal, D., Mohamad, S.F., Coqueret, X.: Recent advances in the radiation chemistry of destructured starch and other glucans as model compounds. Carbohydr. Chem. 45, 609–639 (2021). https://doi.org/10.1039/9781839164538-00609

    Article  Google Scholar 

  49. Von Sonntag, C., Dizdarogju, M., Schulte-Frohlinde, D.: Radiation chemisty of carbohydrates, VIII. g-radiolysis of cellobiose in N2O-saturated aqueous solution. Part II. Quantitative measurements. Z. Naturforsch B 31, 857–864 (1976)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are deeply grateful to Pr F. Moussa (Institut Universitaire de Technologie, Université Paris-Saclay), Pr X. Coqueret (Institut de Chimie Moléculaire, Université de Reims Champagne Ardenne), and Pr F. Jérôme (Institut de Chimie des Milieux et Matériaux, Université de Poitiers) for their fruitful discussions on enzymes reactions and to Res. Engr J.-P. Larbre (Institut de Chimie Physique, Université Paris-Saclay) for his help on ELYSE experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Belloni.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The article does not include human participants and/ or animals research.

Consent for Publication

The authors hereby confirm, that all authors mutually agree for submitting their manuscript and that the manuscript is original work of the authors.

Informed Consent

Informed consent was obtained from all participants.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Gharib, S., Mostafavi, M. & Belloni, J. Radiation-Assisted Hydrolysis of Lignocellulosic Biomass. Mechanistic Study. Waste Biomass Valor 14, 1113–1122 (2023). https://doi.org/10.1007/s12649-022-01933-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01933-4

Keywords

Navigation