Skip to main content

Advertisement

Log in

Towards Valeric Acid Production from Riboflavin-Assisted Waste Sludge: pH-Dependent Fermentation and Microbial Community

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The fermentative valeric acid production is a carbon-neutral method for the disposal of waste sludge in municipal wastewater treatment plants. To overcome the bottlenecks of energy-consuming and slow hydrolysis and acidification during the fermentation process, riboflavin was supplemented to enhance the biological redox reaction. The effect of pH (3, 5, 7, 9, 11) on the production of total volatile fatty acids (VFAs) and valeric acid from waste sludge, and on the shift of microbial community was investigated. The results indicated that the release of organic compounds and nitrogen, the production of VFAs and valeric acid, and the associated microbial community were pH-dependent in riboflavin-assisted sludge fermentation systems. Higher pH (9, 11) and shorter retention time (12 days) benefited the valeric acid production, which achieved to 190.8 (mg COD / g VSS), accounting for 76.6% of the total VFAs. Meanwhile, the solubilization of organics and ammonia was up to 43.7% and 38.4%, respectively. Alkaline condition in riboflavin-assisted fermentation system reduced the taxonomy categories and enriched the bacteria phyla of Firmicutes and the associated genera species, which were responsible for the acidification process related to valeric acid production. The study provided scientific insights into the recovery of valuable organic matter from waste sludge to achieve carbon-neutral and sustainable society.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ma, S., Hu, H., Wang, J., Liao, K., Ma, H., Ren, H.: The characterization of dissolved organic matter in alkaline fermentation of sewage sludge with different pH for volatile fatty acids production. Water Res. 164, 114924 (2019). https://doi.org/10.1016/j.watres.2019.114924

    Article  Google Scholar 

  2. Iglesias-Iglesias, R., Campanaro, S., Treu, L., Kennes, C., Veiga, M.C.: Valorization of sewage sludge for volatile fatty acids production and role of microbiome on acidogenic fermentation. Bioresour Technol. 291, 121817 (2019). https://doi.org/10.1016/j.biortech.2019.121817

    Article  Google Scholar 

  3. Huang, J., Zhou, R., Chen, J., Han, W., Chen, Y., Wen, Y., Tang, J.: Volatile fatty acids produced by co-fermentation of waste activated sludge and henna plant biomass. Bioresour Technol. 211, 80–86 (2016). https://doi.org/10.1016/j.biortech.2016.03.071

    Article  Google Scholar 

  4. Li, X., Chen, Y., Zhao, S., Wang, D., Zheng, X., Luo, J.: Lactic acid accumulation from sludge and food waste to improve the yield of propionic acid-enriched VFA. Biochem. Eng. J. 84, 28–35 (2014). https://doi.org/10.1016/j.bej.2013.12.020

    Article  Google Scholar 

  5. Mohamed, E., Pritha, C., Paolo, D., Marika, K., Fatma, E., Mohamed, A., Jukka, R.: Bio-hydrogen production from sewage sludge: Screening for pretreatments and semi-continuous reactor operation. Waste Biomass Valori. 11, 4225–4234 (2019). https://doi.org/10.1007/s12649-019-00743-5

    Article  Google Scholar 

  6. Hu, H., Ma, S., Zhang, X., Ren, H.: Characteristics of dissolved organic nitrogen in effluent from a biological nitrogen removal process using sludge alkaline fermentation liquid as an external carbon source. Water Res. 176, 115741 (2020). https://doi.org/10.1016/j.watres.2020.115741

    Article  Google Scholar 

  7. Yuan, Y., Hu, X., Chen, H., Zhou, Y., Zhou, Y., Wang, D.: Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge. Sci. Total Environ. 694, 133741 (2019). https://doi.org/10.1016/j.scitotenv.2019.133741

    Article  Google Scholar 

  8. Sun, P., Gao, G., Zhao, Z., Xia, C., Li, F.: Acidity-regulation for enhancing the stability of Ni/HZSM-5 catalyst for valeric biofuel production. Appl. Catal. B-Environ. 189, 19–25 (2016). https://doi.org/10.1016/j.apcatb.2016.02.026

    Article  Google Scholar 

  9. Bisselink, R.J.M., Crockatt, M., Zijlstra, M., Bakker, I.J., Goetheer, E., Slaghek, T.M., van Es, D.S.: Identification of more benign cathode materials for the electrochemical reduction of levulinic acid to valeric acid. Chemelectrochem. 6, 3285–3290 (2019). https://doi.org/10.1002/celc.201900734

    Article  Google Scholar 

  10. Simakova, I.L., Murzin, D.Y.: Transformation of bio-derived acids into fuel-like alkanes via ketonic decarboxylation and hydrodeoxygenation: Design of multifunctional catalyst, kinetic and mechanistic aspects. J. Energy Chem. 25, 208–224 (2016). https://doi.org/10.1016/j.jechem.2016.01.004

    Article  Google Scholar 

  11. Munoz-Olasagasti, M., Sanudo-Mena, A., Cecilia, J.A., Granados, M.L., Maireles-Torres, P., Mariscal, R.: Direct conversion of levulinic acid into valeric biofuels using Pd supported over zeolites as catalysts. Top. Catal. 62, 579–588 (2019). https://doi.org/10.1007/s11244-019-01147-4

    Article  Google Scholar 

  12. Onrust, L., Van Driessche, K., Ducatelle, R., Schwarzer, K., Haesebrouck, F., Van Immerseel, F.: Valeric acid glyceride esters in feed promote broiler performance and reduce the incidence of necrotic enteritis. Poult. Sci. 97, 2303–2311 (2018). https://doi.org/10.3382/ps/pey085

    Article  Google Scholar 

  13. Hao, J., Wang, X., Wang, H.: Investigation of polyhydroxyalkanoates (PHAs) biosynthesis from mixed culture enriched by valerate-dominant hydrolysate. Front. Environ. Sci. Eng. (2016). https://doi.org/10.1007/s11783-017-0896-8

    Article  Google Scholar 

  14. Park, J.H., Noh, S.M., Woo, J.R., Kim, J.W., Lee, G.M.: Valeric acid induces cell cycle arrest at G1 phase in CHO cell cultures and improves recombinant antibody productivity. Biotechnol. J. 11, 487–496 (2016). https://doi.org/10.1002/biot.201500327

    Article  Google Scholar 

  15. Ma, X., Ye, J., Jiang, L., Sheng, L., Liu, J., Li, Y., Xu, Z.: Alkaline fermentation of waste activated sludge with calcium hydroxide to improve short-chain fatty acids production and extraction efficiency via layered double hydroxides. Bioresour Technol. 279, 117–123 (2019). https://doi.org/10.1016/j.biortech.2019.01.128

    Article  Google Scholar 

  16. Flores-Rodriguez, C., Min, B.: Enrichment of specific microbial communities by optimum applied voltages for enhanced methane production by microbial electrosynthesis in anaerobic digestion. Bioresour Technol. 300, 122624 (2020). https://doi.org/10.1016/j.biortech.2019.122624

    Article  Google Scholar 

  17. Bandelin, J., Lippert, T., Drewes, J.E., Koch, K.: Assessment of sonotrode and tube reactors for ultrasonic pre-treatment of two different sewage sludge types. Ultrason. Sonochem. 64, 105001 (2020). https://doi.org/10.1016/j.ultsonch.2020.105001

    Article  Google Scholar 

  18. Ambrose, H.W., Chin, C.T.L., Hong, E., Philip, L., Suraishkumar, G.K., Sen, T.K., Khiadani, M.: Effect of hybrid (microwave-H2O2) feed sludge pretreatment on single and two-stage anaerobic digestion efficiency of real mixed sewage sludge. Process. Saf. Environ. Protect. 136, 194–202 (2020). https://doi.org/10.1016/j.psep.2020.01.032

    Article  Google Scholar 

  19. Zhao, J., Liu, Y., Ni, B., Wang, Q., Wang, D., Yang, Q., Sun, Y., Zeng, G., Li, X.: Combined effect of free nitrous acid pretreatment and sodium dodecylbenzene sulfonate on short-chain fatty acid production from waste activated sludge. Sci. Rep. 6, 21622 (2016). https://doi.org/10.1038/srep21622

    Article  Google Scholar 

  20. Zhao, J., Zhang, J., Zhang, D., Hu, Z., Sun, Y.: Effect of emerging pollutant fluoxetine on the excess sludge anaerobic digestion. Sci. Total Environ. 752, 141932 (2021). https://doi.org/10.1016/j.scitotenv.2020.141932

    Article  Google Scholar 

  21. Zhang, J., Zhao, J., Sun, Y., Xin, M., Zhang, D., Bian, R.: Mechanisms of emerging pollutant Dechlorane Plus on the production of short-chain fatty acids from sludge anaerobic fermentation. Environ. Sci. Pollut Res. 28, 34902–34912 (2021). https://doi.org/10.1007/s11356-021-13101-7

    Article  Google Scholar 

  22. Zhou, C., Wang, H., Si, Y.B., Wu, K., Yousaf, A.: Electron shuttles enhance the degradation of sulfamethoxazole coupled with Fe(III) reduction by Shewanella oneidensis MR-1. Environ. Toxicol. Pharmacol. 62, 156–163 (2018). https://doi.org/10.1016/j.etap.2018.07.006

    Article  Google Scholar 

  23. Simon-Pascual, A., Sierra-Alvarez, R., Ramos-Ruiz, A., Field, J.A.: Reduction of platinum (IV) ions to elemental platinum nanoparticles by anaerobic sludge. J. Chem. Technol. Biotechnol. 93, 1611–1617 (2018). https://doi.org/10.1002/jctb.5530

    Article  Google Scholar 

  24. Guo, H., Chen, Z., Guo, J., Lu, C., Song, Y., Han, Y., Li, H., Hou, Y.: Enhanced denitrification performance and biocatalysis mechanisms of polyoxometalates as environmentally-friendly inorganic redox mediators. Bioresour Technol. (2019). https://doi.org/10.1016/j.biortech.2019.121816

    Article  Google Scholar 

  25. Martins, L.R., Baeta, B.E.L., Gurgel, L.V.A., de Aquino, S.F., Gil, L.F.: Application of cellulose-immobilized riboflavin as a redox mediator for anaerobic degradation of a model azo dye Remazol Golden Yellow RNL. Ind. Crops Prod. 65, 454–462 (2015). https://doi.org/10.1016/j.indcrop.2014.10.059

    Article  Google Scholar 

  26. Huang, J., Chen, S., Wu, W., Chen, H., Guo, K., Tang, J., Li, J.: Insights into redox mediator supplementation on enhanced volatile fatty acids production from waste activated sludge. Environ. Sci. Pollut Res. 26, 27052–27062 (2019). https://doi.org/10.1007/s11356-019-05927-z

    Article  Google Scholar 

  27. Shi, B., Huang, J., Yin, Z., Han, W., Qiu, S., Tang, J., Hou, P.: Riboflavin boosts fermentative valeric acid generation from waste activated sludge. Bioresources. 15, 3962–3969 (2020). https://doi.org/10.15376/biores.15.2.3962-3969

    Article  Google Scholar 

  28. Li, L., Li, Z., Song, K., Gu, Y., Gao, X., Zhao, X.: Short-chain fatty acids resource recovery potential from algal sludge via anaerobic fermentation under various pH values. Chemosphere. 275, 129954 (2021). https://doi.org/10.1016/j.chemosphere.2021.129954

    Article  Google Scholar 

  29. Ma, J., Xie, S., Yu, L., Zhen, Y., Zhao, Q., Frear, C., Chen, S., Wang, Z., Shi, Z.: pH shaped kinetic characteristics and microbial community of food waste hydrolysis and acidification. Biochem. Eng. J. 146, 52–59 (2019). https://doi.org/10.1016/j.bej.2019.03.004

    Article  Google Scholar 

  30. Ye, M., Luo, J., Zhang, S., Yang, H., Li, Y., Liu, J.: In-situ ammonia stripping with alkaline fermentation of waste activated sludge to improve short-chain fatty acids production and carbon source availability. Bioresour Technol. 301, 122782 (2020). https://doi.org/10.1016/j.biortech.2020.122782

    Article  Google Scholar 

  31. Zou, J., Pan, J., He, H., Wu, S., Xiao, N., Ni, Y., Li, J.: Nitrifying aerobic granular sludge fermentation for releases of carbon source and phosphorus: The role of fermentation pH. Bioresour Technol. 260, 30–37 (2018). https://doi.org/10.1016/j.biortech.2018.03.071

    Article  Google Scholar 

  32. APHA/AWWA/WEF: Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, Washington (2012)

    Google Scholar 

  33. Magoc, T., Salzberg, S.L.: FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 27, 2957–2963 (2011). https://doi.org/10.1093/bioinformatics/btr507

    Article  Google Scholar 

  34. Chen, Y., Jiang, S., Yuan, H., Zhou, Q., Gu, G.: Hydrolysis and acidification of waste activated sludge at different pHs. Water Res. 41, 683–689 (2007). https://doi.org/10.1016/j.watres.2006.07.030

    Article  Google Scholar 

  35. Chang, C., Tyagi, V.K., Lo, S.L.: Effects of microwave and alkali induced pretreatment on sludge solubilization and subsequent aerobic digestion. Bioresour Technol. 102, 7633–7640 (2011). https://doi.org/10.1016/j.biortech.2011.05.031

    Article  Google Scholar 

  36. Kavitha, S., Banu, J.R., Subitha, G., Ushani, U., Yeom, I.T.: Impact of thermo-chemo-sonic pretreatment in solubilizing waste activated sludge for biogas production: Energetic analysis and economic assessment. Bioresour Technol. 219, 479–486 (2016). https://doi.org/10.1016/j.biortech.2016.07.115

    Article  Google Scholar 

  37. Khiewwijit, R., Temmink, H., Labanda, A., Rijnaarts, H., Keesman, K.J.: Production of volatile fatty acids from sewage organic matter by combined bioflocculation and alkaline fermentation. Bioresour Technol. 197, 295–301 (2015). https://doi.org/10.1016/j.biortech.2015.08.112

    Article  Google Scholar 

  38. Yuan, Y., Peng, Y., Liu, Y., Jin, B., Wang, B., Wang, S.: Change of pH during excess sludge fermentation under alkaline, acidic and neutral conditions. Bioresour Technol. 174, 1–5 (2014). https://doi.org/10.1016/j.biortech.2014.07.104

    Article  Google Scholar 

  39. Zhao, J., Wang, D., Liu, Y., Ngo, H., Guo, W., Yang, Q., Li, X.: Novel stepwise pH control strategy to improve short chain fatty acid production from sludge anaerobic fermentation. Bioresour Technol. 249, 431–438 (2018). https://doi.org/10.1016/j.biortech.2017.10.050

    Article  Google Scholar 

  40. Zou, M., Yin, M., Yuan, Y., Wang, D., Xiong, W., Yang, X., Zhou, Y., Chen, H.: Triclosan facilitates the recovery of volatile fatty acids from waste activated sludge. Sci. Total Environ. (2021). https://doi.org/10.1016/j.scitotenv.2020.142336

    Article  Google Scholar 

  41. Fang, W., Zhang, X., Spanjers, H., Zhang, T.: Enhancing volatile fatty acid production during anaerobic fermentation of waste activated sludge with persulfates: Peroxymonosulfate versus peroxydisulfate. ACS Sustainable Chem. Eng. 9, 10073–10082 (2021). https://doi.org/10.1021/acssuschemeng.1c01781

    Article  Google Scholar 

  42. Wang, Y., Wang, D., Liu, Y., Wang, Q., Chen, F., Yang, Q., Li, X., Zeng, G., Li, H.: Triclocarban enhances short-chain fatty acids production from anaerobic fermentation of waste activated sludge. Water Res. 127, 150–161 (2017). https://doi.org/10.1016/j.watres.2017.09.062

    Article  Google Scholar 

  43. Yang, C., Zhao, S., Guo, Z., Liu, W., Wang, L., Yu, S., Liu, B., Cong, X.: Alkaline aided thermophiles pretreatment of waste activated sludge to increase short chain fatty acids production: Microbial community evolution by alkaline on hydrolysis and fermentation. Environ. Res. (2020). https://doi.org/10.1016/j.envres.2020.109503

    Article  Google Scholar 

  44. Chen, Y., Ruhyadi, R., Shen, N., Wu, Y., Yan, W., Liang, Z., Huang, J., Wang, G.: Three birds with one stone: Lower volatile fatty acids (VFAs) reduction, higher phosphorus (P) removal, and lower alkali consumption via magnesium dosing after waste activated sludge (WAS) alkaline fermentation. J Clean. Prod. 258, 120687 (2020). https://doi.org/10.1016/j.jclepro.2020.120687

    Article  Google Scholar 

  45. Yin, J., He, X.Z., Chen, T.: Can salt-tolerant sludge mitigate the salt inhibition to acidogenic fermentation of food waste? Insight into volatile fatty acid production and microbial community. Waste Biomass Valori. (2022). https://doi.org/10.1007/s12649-021-01654-0

    Article  Google Scholar 

  46. Liu, X., Du, M., Yang, J., Wu, Y., Xu, Q., Wang, D., Yang, Q., Yang, G., Li, X.: Sulfite serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge. Chem. Eng. J. 385, 123991 (2020). https://doi.org/10.1016/j.cej.2019.123991

    Article  Google Scholar 

  47. Zhou, L., Gao, Y., Yu, K., Zhou, H., De Costa, Y., Yi, S., Zhuang, W.: Microbial community in in-situ waste sludge anaerobic digestion with alkalization for enhancement of nutrient recovery and energy generation. Bioresour Technol. (2020). https://doi.org/10.1016/j.biortech.2019.122277

    Article  Google Scholar 

  48. Liu, J., Qiu, S., Zhang, L., He, Q., Li, X., Zhang, Q., Peng, Y.: Intermittent pH control strategy in sludge anaerobic fermentation: Higher short-chain fatty acids production, lower alkali consumption, and simpler control. Bioresour Technol. 345, 126517 (2021). https://doi.org/10.1016/j.biortech.2021.126517

  49. Hu, Z., Wessels, H., van Alen, T., Jetten, M.S.M., Kartal, B.: Nitric oxide-dependent anaerobic ammonium oxidation. Nat. Commun. (2019). https://doi.org/10.1038/s41467-019-09268-w

    Article  Google Scholar 

  50. Zhang, D., Cui, L., Zhu, H., Madani, R.M.A., Liang, J.: Treatment performance and microbial community under ammonium sulphate wastewater in a sulphate reducing ammonium oxidation process. Environ. Technol. 42, 2982–2990 (2021). https://doi.org/10.1080/09593330.2020.1720305

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ministry of Science and Technology of the People’s Republic of China, and Zhejiang Society for Environmental Sciences for providing funding support for this research.

Funding

This research was funded by the National Key R&D Program of China (2019YFE0124600), Zhejiang Provincial Ecological & Environmental Research Project and Application (2021HT0028) and Graduate Scientific Research Foundation of Hangzhou Dianzi University (CXJJ2021032).

Author information

Authors and Affiliations

Authors

Contributions

BS Investigation, validation, data curation, writing - original draft. JH Investigation, writing- original draft, review & editing, conceptualization, methodology, supervision, funding acquisition. YL Adising, funding acquisition. WH Writing- reviewing and editing. SQ Writing- reviewing and editing. DZ Investigation, writing- reviewing and editing. JT Adising, supervision. PH Funding acquisition, supervision, project administration.

Corresponding author

Correspondence to Jingang Huang.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 154.5 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, B., Huang, J., Lin, Y. et al. Towards Valeric Acid Production from Riboflavin-Assisted Waste Sludge: pH-Dependent Fermentation and Microbial Community. Waste Biomass Valor 14, 833–845 (2023). https://doi.org/10.1007/s12649-022-01900-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01900-z

Keywords

Navigation