Skip to main content

Advertisement

Log in

Ignition, Combustion, and Mechanical Properties of Briquettes from Coal Slime and Oil Waste, Biomass, Peat and Starch

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The paper discusses the mechanical properties of waste-derived briquettes, their ignition and combustion behavior, and emissions. The briquettes based on coal slime blended with straw/peat/sawdust/waste compressor oil were used. 100% Coal slime and 100% biomass briquettes were reference cases. The proportion of coal slime in the multi-component briquettes was at least 85%. The samples were tested on a laboratory scale. Briquettes based on coal slime and used oil were characterized by moisture resistance and high energy performance indicator, yet they were brittle. Starch improved their impact resistance considerably. However, when added to mixtures of coal slime and straw, starch led to greater destruction of initially rather strong briquettes. The addition of starch slightly increased the water absorption characteristics of all the samples during storage. The ignition temperatures of briquettes of different compositions ranged from 350 to 610 °C. The briquette ignition characteristics tended to worsen when starch was added. A multi-criteria evaluation of fuels, considering cost, ignition, combustion behavior and emissions, as well as mechanical properties, showed that the highest efficiency is typical of 100% sawdust briquettes. For the fossil fuel briquettes, the best synergistic effect resulted from the combination of 90% coal slime and 10% straw. The “coal slime-peat-starch” is an undesirable combination, because it reduces the efficiency indicators for all the categories considered and makes the fuel more expensive.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Karkania, V., Fanara, E., Zabaniotou, A.: Review of sustainable biomass pellets production—a study for agricultural residues pellets’ market in Greece. Renew. Sustain. Energy Rev. 16, 1426–1436 (2012). https://doi.org/10.1016/j.rser.2011.11.028

    Article  Google Scholar 

  2. Kienzl, N., Margaritis, N., Isemin, R., Zaychenko, V., Strasser, C., Kourkoumpas, D.S., Grammelis, P., Klimov, D., Larina, O., Sytchev, G., Mikhalev, A.: Applicability of torrefied sunflower husk pellets in small and medium scale furnaces. Waste Biomass Valoriz. 12, 2579–2596 (2021). https://doi.org/10.1007/S12649-020-01170-7/FIGURES/5

    Article  Google Scholar 

  3. Kizuka, R., Ishii, K., Ochiai, S., Sato, M., Yamada, A., Nishimiya, K.: Improvement of biomass fuel properties for rice straw pellets using torrefaction and mixing with wood chips. Waste Biomass Valoriz. 12, 3417–3429 (2021). https://doi.org/10.1007/S12649-020-01234-8/FIGURES/8

    Article  Google Scholar 

  4. Wang, Z., Zhai, Y., Wang, T., Wang, B., Peng, C., Li, C.: Pelletizing of hydrochar biofuels with organic binders. Fuel 280, 118659 (2020). https://doi.org/10.1016/j.fuel.2020.118659

    Article  Google Scholar 

  5. García, R., Gil, M.V., Rubiera, F., Pevida, C.: Pelletization of wood and alternative residual biomass blends for producing industrial quality pellets. Fuel 251, 739–753 (2019). https://doi.org/10.1016/J.FUEL.2019.03.141

    Article  Google Scholar 

  6. Mandal, S., Prasanna Kumar, G.V., Bhattacharya, T.K., Tanna, H.R., Jena, P.C.: Briquetting of pine needles (Pinus roxburgii) and their physical, handling and combustion properties. Waste Biomass Valoriz. 10, 2415–2424 (2019). https://doi.org/10.1007/S12649-018-0239-4/TABLES/8

    Article  Google Scholar 

  7. Zhang, X., Xu, D., Xu, Z., Cheng, Q.: The effect of different treatment conditions on biomass binder preparation for lignite briquette. Fuel Process. Technol. 73, 185–196 (2001). https://doi.org/10.1016/S0378-3820(01)00179-5

    Article  Google Scholar 

  8. Matúš, M., Križan, P., Šooš, Ľ, Beniak, J.: The effect of papermaking sludge as an additive to biomass pellets on the final quality of the fuel. Fuel 219, 196–204 (2018). https://doi.org/10.1016/j.fuel.2018.01.089

    Article  Google Scholar 

  9. Taulbee, D., Patil, D.P., Honaker, R.Q., Parekh, B.K.: Briquetting of coal fines and sawdust. Part I: binder and briquetting-parameters evaluations. Int. J. Coal Prep. Util. 29, 1–22 (2009). https://doi.org/10.1080/19392690802628705

    Article  Google Scholar 

  10. Bala-Litwiniak, A., Radomiak, H.: Possibility of the utilization of waste glycerol as an addition to wood pellets. Waste Biomass Valoriz. 10, 2193–2199 (2019). https://doi.org/10.1007/S12649-018-0260-7/FIGURES/5

    Article  Google Scholar 

  11. Olugbade, T., Ojo, O., Mohammed, T.: Influence of binders on combustion properties of biomass briquettes: a recent review. Bioenergy Res. 12, 241–259 (2019). https://doi.org/10.1007/s12155-019-09973-w

    Article  Google Scholar 

  12. Zhang, S., Feng, L., Peng, X., Mao, M., Chi, Y., Wang, F.: Effect of sludge pellets addition on combustion characteristics and ash behaviour of municipal solid waste. Waste Biomass Valoriz. 11, 5351–5361 (2020). https://doi.org/10.1007/s12649-020-00996-5

    Article  Google Scholar 

  13. Iftikhar, M., Asghar, A., Ramzan, N., Sajjadi, B., Chen, W.: Y: Biomass densification: effect of cow dung on the physicochemical properties of wheat straw and rice husk based biomass pellets. Biomass Bioenergy 122, 1–16 (2019). https://doi.org/10.1016/j.biombioe.2019.01.005

    Article  Google Scholar 

  14. Dai, X., Theppitak, S., Yoshikawa, K.: Pelletization of carbonized wood using organic binders with biomass gasification residue as additive. Energy Procedia 158, 509–515 (2019). https://doi.org/10.1016/j.egypro.2019.01.144

    Article  Google Scholar 

  15. Gunukula, S., Daigneault, A., Boateng, A.A., Mullen, C.A., DeSisto, W.J., Wheeler, M.C.: Influence of upstream, distributed biomass-densifying technologies on the economics of biofuel production. Fuel 249, 326–333 (2019). https://doi.org/10.1016/j.fuel.2019.03.079

    Article  Google Scholar 

  16. Lumadue, M.R., Cannon, F.S., Brown, N.R.: Lignin as both fuel and fusing binder in briquetted anthracite fines for foundry coke substitute. Fuel 97, 869–875 (2012). https://doi.org/10.1016/J.FUEL.2012.02.061

    Article  Google Scholar 

  17. Mack, R., Kuptz, D., Schön, C., Hartmann, H.: Combustion behavior and slagging tendencies of kaolin additivated agricultural pellets and of wood-straw pellet blends in a small-scale boiler. Biomass Bioenergy 125, 50–62 (2019). https://doi.org/10.1016/j.biombioe.2019.04.003

    Article  Google Scholar 

  18. Malika, A., Mohammed, A., Guhel, Y.: Energetic combustion characteristics and environmental impact of Moroccan biomass wastes and their solid biofuel. Waste Biomass Valoriz. 10, 1311–1322 (2019). https://doi.org/10.1007/s12649-017-0128-2

    Article  Google Scholar 

  19. Isemin, R., Mikhalev, A., Klimov, D., Grammelis, P., Margaritis, N., Kourkoumpas, D.-S., Zaichenko, V.: Torrefaction and combustion of pellets made of a mixture of coal sludge and straw. Fuel 210, 859–865 (2017). https://doi.org/10.1016/j.fuel.2017.09.032

    Article  Google Scholar 

  20. Klojzy-Karczmarczyk, B., Mazurek, J., Wiencek, M., Feliks, J.: Blends of hard coal sludge with pulverized lignite as alternative energy raw materials. Polityka Energ. 22, 83–98 (2019). https://doi.org/10.33223/epj/111988

    Article  Google Scholar 

  21. Djatkov, D., Martinov, M., Kaltschmitt, M.: Influencing parameters on mechanical–physical properties of pellet fuel made from corn harvest residues. Biomass Bioenergy 119, 418–428 (2018). https://doi.org/10.1016/j.biombioe.2018.10.009

    Article  Google Scholar 

  22. Muazu, R.I., Stegemann, J.A.: Biosolids and microalgae as alternative binders for biomass fuel briquetting. Fuel 194, 339–347 (2017). https://doi.org/10.1016/J.FUEL.2017.01.019

    Article  Google Scholar 

  23. ASTM D5373-21, Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke. https://www.astm.org/Standards/D5373.htm. Accessed 5 Sept 2021

  24. ISO 1928:2009—Solid Mineral Fuels—Determination of Gross Calorific Value by the Bomb Calorimetric Method and Calculation of Net Calorific Value

  25. ISO 6245:2001—Petroleum Products—Determination of Ash

  26. ASTM: ASTM D240–19—Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter. ASTM International, West Conshohocken (2000)

    Google Scholar 

  27. Miccio, F., Raganati, F., Ammendola, P., Okasha, F., Miccio, M.: Fluidized bed combustion and gasification of fossil and renewable slurry fuels. Energies 14, 7766 (2021). https://doi.org/10.3390/EN14227766

    Article  Google Scholar 

  28. Wang, X., Lin, Q., Wang, C., Zhou, K., Zhang, P., Li, F., Lei, Y.: The ignition characteristics and combustion processes of coal gangue under different hot coflow conditions in O2/CO2 atmosphere: in pellet form. Combust. Sci. Technol. 191, 419–434 (2019). https://doi.org/10.1080/00102202.2018.1493468

    Article  Google Scholar 

  29. Gao, W., Zhang, M., Wu, H.: Ignition temperatures of various bio-oil based fuel blends and slurry fuels. Fuel 207, 240–243 (2017). https://doi.org/10.1016/J.FUEL.2017.06.090

    Article  Google Scholar 

  30. Lei, K., Zhang, R., Ye, B.Q., Cao, J., Liu, D.: Study of sewage sludge/coal co-combustion by thermogravimetric analysis and single particle co-combustion method. Energy Fuels 32, 6300–6308 (2018). https://doi.org/10.1021/acs.energyfuels.8b00511

    Article  Google Scholar 

  31. Vershinina, K., Nyashina, G., Dorokhov, V., Shlegel, N.: The prospects of burning coal and oil processing waste in slurry, gel, and solid state. Appl. Therm. Eng. 156, 51–62 (2019). https://doi.org/10.1016/J.APPLTHERMALENG.2019.04.035

    Article  Google Scholar 

  32. Glushkov, D.O., Lyrshchikov, S.Y., Shevyrev, S.A., Strizhak, P.A.: Burning properties of slurry based on coal and oil processing waste. Energy Fuels 30, 3441–3450 (2016). https://doi.org/10.1021/acs.energyfuels.5b02881

    Article  Google Scholar 

  33. Rabinovich, S.G.: Measurement Errors and Uncertainties: Theory and Practice. Springer, New York (2005)

    MATH  Google Scholar 

  34. Feng, X., Yu, C., Shu, Z., Liu, X., Yan, W., Zheng, Q., Sheng, K., He, Y.: Rapid and non-destructive measurement of biofuel pellet quality indices based on two-dimensional near infrared spectroscopic imaging. Fuel 228, 197–205 (2018). https://doi.org/10.1016/j.fuel.2018.04.149

    Article  Google Scholar 

  35. Brand, M.A., Mariano Rodrigues, T., Peretti da Silva, J., de Oliveira, J.: Recovery of agricultural and wood wastes: the effect of biomass blends on the quality of pellets. Fuel 284, 118881 (2021). https://doi.org/10.1016/j.fuel.2020.118881

    Article  Google Scholar 

  36. Gilvari, H., de Jong, W., Schott, D.L.: Quality parameters relevant for densification of bio-materials: measuring methods and affecting factors—a review. Biomass Bioenergy 120, 117–134 (2019). https://doi.org/10.1016/j.biombioe.2018.11.013

    Article  Google Scholar 

  37. Lubwama, M., Yiga, V.A., Muhairwe, F., Kihedu, J.: Physical and combustion properties of agricultural residue bio-char bio-composite briquettes as sustainable domestic energy sources. Renew. Energy 148, 1002–1016 (2020). https://doi.org/10.1016/j.renene.2019.10.085

    Article  Google Scholar 

  38. Adeleke, A.A., Odusote, J.K., Lasode, O.A., Ikubanni, P.P., Malathi, M., Paswan, D.: Densification of coal fines and mildly torrefied biomass into composite fuel using different organic binders. Heliyon 5, e02160 (2019). https://doi.org/10.1016/j.heliyon.2019.e02160

    Article  Google Scholar 

  39. Stasiak, M., Molenda, M., Bańda, M., Wiącek, J., Parafiniuk, P., Gondek, E.: Mechanical and combustion properties of sawdust—straw pellets blended in different proportions. Fuel Process. Technol. 156, 366–375 (2017). https://doi.org/10.1016/J.FUPROC.2016.09.021

    Article  Google Scholar 

  40. Awny, A., Radwan, M.N., Nour, M.A., Fouda, S.S., Al-Dhumri, S.A., Soliman, S.M., El-Tahan, A.M., El-Saadony, M.T., Faid-Allah, R.S.A.: Finite element modeling of the breakage behavior of agricultural biomass pellets under different heights during handling and storage. Saudi J. Biol. Sci. 29, 1407–1415 (2022). https://doi.org/10.1016/J.SJBS.2021.11.034

    Article  Google Scholar 

  41. Sarker, T.R., Azargohar, R., Dalai, A.K., Meda, V.: Characteristics of torrefied fuel pellets obtained from co-pelletization of agriculture residues with pyrolysis oil. Biomass Bioenergy 150, 106139 (2021). https://doi.org/10.1016/J.BIOMBIOE.2021.106139

    Article  Google Scholar 

  42. Cheng, J., Zhou, F., Si, T., Zhou, J., Cen, K.: Mechanical strength and combustion properties of biomass pellets prepared with coal tar residue as a binder. Fuel Process. Technol. 179, 229–237 (2018). https://doi.org/10.1016/J.FUPROC.2018.07.011

    Article  Google Scholar 

  43. Guo, F., Chen, J., He, Y., Gardy, J., Sun, Y., Jiang, J., Jiang, X.: Upgrading agro-pellets by torrefaction and co-pelletization process using food waste as a pellet binder. Renew. Energy 191, 213–224 (2022). https://doi.org/10.1016/J.RENENE.2022.04.012

    Article  Google Scholar 

  44. Navalta, C.J.L.G., Banaag, K.G.C., Raboy, V.A.O., Go, A.W., Cabatingan, L.K., Ju, Y.H.: Solid fuel from co-briquetting of sugarcane bagasse and rice bran. Renew. Energy 147, 1941–1958 (2020). https://doi.org/10.1016/j.renene.2019.09.129

    Article  Google Scholar 

  45. Nicholls, A.: Confidence limits, error bars and method comparison in molecular modelling. Part 1: the calculation of confidence intervals. J. Comput. Aided Mol. Des. 28, 887–918 (2014). https://doi.org/10.1007/S10822-014-9753-Z/TABLES/2

    Article  Google Scholar 

  46. Okot, D.K., Bilsborrow, P.E., Phan, A.N.: Briquetting characteristics of bean straw–maize cob blend. Biomass Bioenergy 126, 150–158 (2019). https://doi.org/10.1016/j.biombioe.2019.05.009

    Article  Google Scholar 

  47. Nanou, P., Huijgen, W.J.J., Carbo, M.C., Kiel, J.H.A.: The role of lignin in the densification of torrefied wood in relation to the final product properties. Biomass Bioenergy 111, 248–262 (2018). https://doi.org/10.1016/j.biombioe.2017.05.005

    Article  Google Scholar 

  48. Nyashina, G.S., Shlegel, N.E., Vershinina, K.Y., Strizhak, P.A.: Industrial waste as part of coal-water slurry fuels. Energy Fuels 32, 11398–11410 (2018). https://doi.org/10.1021/ACS.ENERGYFUELS.8B02826

    Article  Google Scholar 

  49. Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G.: An overview of the chemical composition of biomass. Fuel 89(5), 913–933 (2010)

    Article  Google Scholar 

  50. Dorokhov, V.V., Kuznetsov, G.V., Nyashina, G.S., Strizhak, P.A.: Composition of a gas and ash mixture formed during the pyrolysis and combustion of coal-water slurries containing petrochemicals. Environ. Pollut. (2021). https://doi.org/10.1016/j.envpol.2021.117390

    Article  Google Scholar 

Download references

Funding

The study was supported by a Grant from the Ministry of Science and Higher Education of Russia, Agreement No 075-15-2020-806 (Contract No 13.1902.21.0014).

Author information

Authors and Affiliations

Authors

Contributions

KYV: Investigation, Writing-original draft, and Visualization; VVD: Methodology, Investigation; DSR: Methodology, Investigation; PAS: Supervision, Conceptualization.

Corresponding author

Correspondence to Ksenia Vershinina.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vershinina, K., Dorokhov, V., Romanov, D. et al. Ignition, Combustion, and Mechanical Properties of Briquettes from Coal Slime and Oil Waste, Biomass, Peat and Starch. Waste Biomass Valor 14, 431–445 (2023). https://doi.org/10.1007/s12649-022-01883-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01883-x

Keywords

Navigation