Skip to main content

Advertisement

Log in

Production and Microencapsulation of Protein Hydrolysate of Pink Perch (Nemipterus japonicus) By-Products Obtained from Surimi Industry for Its Sustainable Utilization

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

During surimi processing, large amount of the head & viscera is generated as by-product, which is either discarded or used for production of low value products such as fish feed. This study presents technology for sustainable utilization of by-products as high value-added products which indirectly reduces environmental pollution. Response Surface Methodology was used to define the optimal conditions for protein hydrolysates production. Different temperature (25–70 °C), time (20–120 min), and enzyme concentrations (0.05–0.2%) were optimized to obtain the maximum yield of Pink Perch Head & Viscera Protein Hydrolysate (PHVPH). The analysis of PHVPH revealed high amount of essential amino acids (35%) with 15% degree of hydrolysis, good functional properties, and moderate antioxidant properties (24.8%). The PHVPH was further microencapsulated using combination of wall material (maltodextrin, sodium alginate, gum Arabic and carboxyl methyl cellulose) to reduce the bitterness, fishy odor and hygroscopicity of PHVPH. Efficiency of microencapsulation process of PHVPH was assess by physiochemical properties, antioxidant activity, chemical bond (FTIR), microstructure (SEM) and sensory acceptability. The presence of PHVPH in the structure of microcapsule was proved by FTIR spectrometry. In addition, sensory evaluation of PHVPH and microencapsulated protein hydrolysate suggested that the microencapsulation process has been effective method in reducing the bitterness and odor of PHVPH powder and enhance its value in food formulation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Naqash, S.Y., Nazeer, R.A.: Antioxidant and functional properties of protein hydrolysates from Pink Perch (Nemipterus japonicus) muscle. J. Food Sci. Technol. 50(5), 972–978 (2013). https://doi.org/10.1007/s13197-011-0416-y

    Article  Google Scholar 

  2. Gajanan, P.G., Elavarasan, K.: Bioactive and functional properties of protein hydrolysates from fish frame processing waste using plant proteases. Environ. Sci. Pollut. Res. 23(24), 24901–24911 (2016). https://doi.org/10.1007/s11356-016-7618-9

    Article  Google Scholar 

  3. Wu, S.: Effect of pullulan on gel properties of Scomberomorus niphonius surimi. Int. J. Biol. Macromol. 93, 1118–1120 (2016). https://doi.org/10.1016/j.ijbiomac.2016.09.085

    Article  Google Scholar 

  4. Sun, L., Sun, J., Thavaraj, P., Yang, X., Guo, Y.: Effects of thinned young apple polyphenols on the quality of grass carp (Ctenopharyngodon idellus) surimi during cold storage. Food Chem. 224, 372–381 (2017). https://doi.org/10.1016/j.foodchem.2016.12.097

    Article  Google Scholar 

  5. Sultan, F.A., Routroy, S., Thakur, M.: Introducing traceability in the Indian Surimi supply chain. Mater. Today 28, 964–969 (2020). https://doi.org/10.1016/j.matpr.2019.12.333

    Article  Google Scholar 

  6. Jafarpour, A., Gomes, R.M., Gregersen, S., Sloth, J.J., Jacobsen, C., Sørensen, A.D.M.: Characterization of cod (Gadus morhua) frame composition and its valorization by enzymatic hydrolysis. J. Food Compos. Anal. 89, 103469 (2020). https://doi.org/10.1016/j.jfca.2020.103469

    Article  Google Scholar 

  7. Kim, N.: A comparative study on properties of fish meat hydrolysates produced by an enzymatic process at high pressure. Food Sci. Biotechnol. 29(1), 75–83 (2020). https://doi.org/10.1007/s10068-019-00648-y

    Article  Google Scholar 

  8. Siewe, F.B., Kudre, T.G., Narayan, B.: Optimization of ultrasound-assisted enzymatic extraction conditions of umami compounds from fish by-products using the combination of fractional factorial design and central composite design. Food Chem. 334, 127498 (2021). https://doi.org/10.1016/j.foodchem.2020.127498

    Article  Google Scholar 

  9. Rustad, T., Storrø, I., Slizyte, R.: Possibilities for the utilisation of marine by-products. Int. J. Food Sci. Technol. (2011). https://doi.org/10.1111/j.1365-2621.2011.02736.x

    Article  Google Scholar 

  10. Halim, N.R.A., Yusof, H.M., Sarbon, N.M.: Functional and bioactive properties of fish protein hydolysates and peptides: a comprehensive review. Trends Food Sci. Technol. 51, 24–33 (2016). https://doi.org/10.1016/j.tifs.2016.02.007

    Article  Google Scholar 

  11. Vieira, E.F., Pinho, O., Ferreira, I.M.: Bio-functional properties of sardine protein hydrolysates obtained by brewer’s spent yeast and commercial proteases. J. Sci. Food Agric. 97(15), 5414–5422 (2017). https://doi.org/10.1002/jsfa.8432

    Article  Google Scholar 

  12. Corrêa-Filho, L.C., Moldão-Martins, M., Alves, V.D.: Advances in the application of microcapsules as carriers of functional compounds for food products. Appl. Sci. 9(3), 571 (2019). https://doi.org/10.3390/app9030571

    Article  Google Scholar 

  13. Jeyakumari, A., Zynudheen, A.A., Parvathy, U.: Microencapsulation of bioactive food ingredients and controlled release—a review. MOJ Food Process. Technol. 2(6), 59 (2016). https://doi.org/10.15406/mojfpt.2016.02.00059

    Article  Google Scholar 

  14. Horwitz, W.: Official Method of Analysis, 18th edn. Association of Officiating Analytical Chemists International Maryland, Rockville (2005)

    Google Scholar 

  15. Steinsholm, S., Oterhals, Å., Underhaug, J., Aspevik, T.: Emulsion and surface-active properties of fish soluble based on direct extraction and after hydrolysis of Atlantic cod and Atlantic salmon backbones. Foods 10(1), 38 (2021). https://doi.org/10.3390/foods10010038

    Article  Google Scholar 

  16. Taylor, W.H.: Formol titration: an evaluation of its various modifications. Analyst 82(976), 488–498 (1957). https://doi.org/10.1039/AN9578200488

    Article  Google Scholar 

  17. Slizyte, R., Rommi, K., Mozuraityte, R., Eck, P., Five, K., Rustad, T.: Bioactivities of fish protein hydrolysates from defatted salmon backbones. Biotechnol. Rep. 11, 99–109 (2016). https://doi.org/10.1016/j.btre.2016.08.003

    Article  Google Scholar 

  18. Alsmeyer, R.H., Cunningham, A.E., Happich, M.L.: Equations predicting PER from amino acid analysis. Food Technol. 28, 34–40 (1974)

    Google Scholar 

  19. Lee, Y.B., Elliott, J.G., Rickansrud, D.A., Hagberg, E.Y.C.: Predicting protein efficiency ratio by the chemical determination of connective tissue content in meat. J. Food Sci. 43, 1359–1362 (1978). https://doi.org/10.1111/j.1365-2621.1978.tb02490.x

    Article  Google Scholar 

  20. Opheim, M., Šližytė, R., Sterten, H., Provan, F., Larssen, E., Kjos, N.P.: Hydrolysis of Atlantic salmon (Salmo salar) rest raw materials—effect of raw material and processing on composition, nutritional value, and potential bioactive peptides in the hydrolysates. Process Biochem. 50(8), 1247–1257 (2015). https://doi.org/10.1016/j.procbio.2015.04.017

    Article  Google Scholar 

  21. Sila, A., Sayari, N., Balti, R., Martinez-Alvarez, O., Nedjar-Arroume, N., Moncef, N., Bougatef, A.: Biochemical and antioxidant properties of peptidic fraction of carotenoproteins generated from shrimp by-products by enzymatic hydrolysis. Food Chem. 148, 445–452 (2014). https://doi.org/10.1016/j.foodchem.2013.05.146

    Article  Google Scholar 

  22. Salem, R.B.S.B., Bkhairia, I., Abdelhedi, O., Nasri, M.: Octopus vulgaris protein hydrolysates: characterization, antioxidant and functional properties. J. Food Sci. Technol. 54(6), 1442–1454 (2017). https://doi.org/10.1007/s13197-017-2567-y

    Article  Google Scholar 

  23. Egerton, S., Culloty, S., Whooley, J., Stanton, C., Ross, R.P.: Characterization of protein hydrolysates from blue whiting (Micromesistius poutassou) and their application in beverage fortification. Food Chem. 245, 698–706 (2018). https://doi.org/10.1016/j.foodchem.2017.10.107

    Article  Google Scholar 

  24. Schmedes, A., Hølmer, G.: A new thiobarbituric acid (TBA) method for determining free malondialdehyde (MDA) and hydroperoxides selectively as a measure of lipid peroxidation. J. Am. Oil Chem. Soc. 66(6), 813–817 (1989). https://doi.org/10.1007/BF02653674

    Article  Google Scholar 

  25. Maqsoudlou, A., Mahoonak, A.S., Mohebodini, H., Koushki, V.: Stability and structural properties of bee pollen protein hydrolysate microencapsulated using maltodextrin and whey protein concentrate. Heliyon 6(5), e03731 (2020). https://doi.org/10.1016/j.heliyon.2020.e03731

    Article  Google Scholar 

  26. Mendanha, D.V., Ortiz, S.E.M., Favaro-Trindade, C.S., Mauri, A., Monterrey-Quintero, E.S., Thomazini, M.: Microencapsulation of casein hydrolysate by complex coacervation with SPI/pectin. Food Res. Int. 42(8), 1099–1104 (2009). https://doi.org/10.1016/j.foodres.2009.05.007

    Article  Google Scholar 

  27. Lu, T.S., Yiao, S.Y., Lim, K., Jensen, R.V., Hsiao, L.L.: Interpretation of biological and mechanical variations between the Lowry versus Bradford method for protein quantification. N. Am. J. Med. Sci. 2(7), 325 (2010). https://doi.org/10.4297/najms.2010.2325

    Article  Google Scholar 

  28. Cai, Y.Z., Corke, H.: Production and properties of spray-dried Amaranthus betacyanin pigments. J. Food Sci. (N. Y.) 65, 1248–1252 (2000). https://doi.org/10.1111/j.1365-2621.2000.tb10273.x

    Article  Google Scholar 

  29. Cano-Chauca, M., Stringheta, P.C., Ramos, A.M., Cal-Vidal, J.: Effect of the carriers on the microstructure of mango powder obtained by spray-drying and its functional characterization. Innov. Food Sci. Emerg. Technol. 6, 420–428 (2005). https://doi.org/10.1016/j.ifset.2005.05.003

    Article  Google Scholar 

  30. Hashemi, A., Jafarpour, A.: Rheological and microstructural properties of beef sausage batter formulated with fish fillet mince. J. Food Sci. Technol. 53(1), 601–610 (2016). https://doi.org/10.1007/s13197-015-2052-4

    Article  Google Scholar 

  31. Jangam, S.V., Thorat, B.N.: Optimization of spray drying of ginger extract. Dry. Technol. 28(12), 1426–1434 (2010). https://doi.org/10.1080/07373937.2010.482699

    Article  Google Scholar 

  32. Thiansilakul, Y., Benjakul, S., Shahidi, F.: Antioxidative activity of protein hydrolysate from round scad muscle using Alcalase and flavourzyme. J. Food Biochem. 31(2), 266–287 (2007). https://doi.org/10.1111/j.1745-4514.2007.00111.x

    Article  Google Scholar 

  33. Nenadis, N., Lazaridou, O., Tsimidou, M.Z.: Use of reference compounds in antioxidant activity assessment. J. Agric. Food Chem. 55(14), 5452–5460 (2007). https://doi.org/10.1021/jf070473q

    Article  Google Scholar 

  34. Flores-Belmont, I.A., Palou, E., López-Malo, A., Jiménez-Munguía, M.T.: Simple and double microencapsulation of Lactobacillus acidophilus with chitosan using spray drying. Int. J. Food Stud. (2015). https://doi.org/10.7455/ijfs/4.2.2015.a7

    Article  Google Scholar 

  35. Klomklao, S., Benjakul, S.: Utilization of tuna processing byproducts: Protein hydrolysate from skipjack tuna (Katsuwonus pelamis) viscera. J. Food Process. Preserv. 41(3), e12970 (2016). https://doi.org/10.1111/jfpp.12970

    Article  Google Scholar 

  36. Rajabzadeh, M., Pourashouri, P., Shabanpour, B., Alishahi, A.: Amino acid composition, antioxidant and functional properties of protein hydrolysates from the roe of rainbow trout (Oncorhynchus mykiss). Int. J. Food Sci. Technol. 53(2), 313–319 (2017). https://doi.org/10.1111/ijfs.13587

    Article  Google Scholar 

  37. Tacias-Pascacio, V.G., Morellon-Sterling, R., Siar, E.H., Tavano, O., Berenguer-Murcia, Á., Fernandez-Lafuente, R.: Use of Alcalase in the production of bioactive peptides: a review. Int. J. Biol. Macromol. 165, 2143–2196 (2020). https://doi.org/10.1016/j.ijbiomac.2020.10.060

    Article  Google Scholar 

  38. Sovik, S.L., Rustad, T.: Effect of season and fishing ground on the activity of cathepsin B and collagenase in by-products from cod species. LWT Food Sci. Technol. 39(1), 43–53 (2006). https://doi.org/10.1016/j.lwt.2004.11.006

    Article  Google Scholar 

  39. Nam, P.V., Van Hoa, N., Anh, T.T.L., Trung, T.S.: Towards zero-waste recovery of bioactive compounds from catfish (Pangasius hypophthalmus) by-products using an enzymatic method. Waste Biomass Valoriz. 11(8), 4195–4206 (2019). https://doi.org/10.1007/s12649-019-00758-y

    Article  Google Scholar 

  40. Wisuthiphaet, N., Kongruang, S., Chamcheun, C.: Production of fish protein hydrolysates by acid and enzymatic hydrolysis. J. Med. Bioeng. (2015). https://doi.org/10.12720/jomb.4.6.466-470

    Article  Google Scholar 

  41. Tacias-Pascacio, V.G., Castaneda-Valbuena, D., Morellon-Sterling, R., Tavano, O., Berenguer-Murcia, Á., Vela-Gutiérrez, G., Fernandez-Lafuente, R.: Bioactive peptides from fisheries residues: a review of use of papain in proteolysis reactions. Int. J. Biol. Macromol. 184, 415–428 (2021). https://doi.org/10.1016/j.ijbiomac.2021.06.076

    Article  Google Scholar 

  42. Sila, A., Bougatef, A.: Antioxidant peptides from marine by-products: isolation, identification and application in food systems. A review. J. Funct. Foods 21, 10–26 (2016). https://doi.org/10.1016/j.jff.2015.11.007

    Article  Google Scholar 

  43. Latorres, J.M., Rios, D.G., Saggiomo, G., Wasielesky, W., Prentice-Hernandez, C.: Functional and antioxidant properties of protein hydrolysates obtained from white shrimp (Litopenaeus vannamei). J. Food Sci. Technol. 55(2), 721–729 (2018). https://doi.org/10.1007/s13197-017-2983-z

    Article  Google Scholar 

  44. Chalamaiah, M., Hemalatha, R., Jyothirmayi, T., Diwan, P.V., Bhaskarachary, K., Vajreswari, A., Dinesh Kumar, B.: Chemical composition and immunomodulatory effects of enzymatic protein hydrolysates from common carp (Cyprinus carpio) egg. Nutrition 31(2), 388–398 (2015). https://doi.org/10.1016/j.nut.2014.08.006

    Article  Google Scholar 

  45. Bhilave, M.P., Bhosale, S., Nadaf, B.: Protein efficiency ratio (PER) of Ctenopharenge donidella fed on soybean formulated feed. Biol. Forum 4(1), 79–81 (2012)

    Google Scholar 

  46. Zainol, M.K., Tan, R.C., Mohd Zin, Z., Ahmad, A., Danish-Daniel, M.: Effectiveness of Toothpony (Gazza minuta) protein hydrolysate on reducing oil uptake upon deep-frying. Food Res. 4(3), 805–813 (2020). https://doi.org/10.26656/fr.2017.4(3).392

    Article  Google Scholar 

  47. Mohamed, G., Sulieman, A., Soliman, N., Bassiuny, S.: Fortification of biscuits with fish protein concentrate. World J. Dairy Food Sci. 9(2), 242–249 (2014). https://doi.org/10.5829/idosi.wjdfs.2014.9.2.1142

    Article  Google Scholar 

  48. Cheng, I.C., Liao, J.X., Ciou, J.Y., Huang, L.T., Chen, Y.W., Hou, C.Y.: Characterization of protein hydrolysates from eel (Anguilla marmorata) and their application in herbal eel extracts. Catalysts 10(2), 205 (2020). https://doi.org/10.3390/catal10020205

    Article  Google Scholar 

  49. Chew, R.M., Ahmad, A., Mohtar, N.F., Rusli, N.D., Zainol, M.K.: Physicochemical and sensory properties of deep fried battered squid containing Brownstripe red snapper (Lutjanus vitta) protein hydrolysate. Food Res. 4(4), 1245–1253 (2020). https://doi.org/10.26656/fr.2017.4(4).083

    Article  Google Scholar 

  50. Kempka, A.P., Prestes, R.C.: Foaming and emulsifying capacity, foam and emulsion stability of proteins of porcine blood: determination at different values of pH and concentrations. Rev. Bras. Tecnol. Agroind. 9(1), 1797–1809 (2015). https://doi.org/10.3895/rbta.v9n1.2065

    Article  Google Scholar 

  51. Abdollahi, M., Undeland, I.: Structural, functional, and sensorial properties of protein isolate produced from salmon, cod, and herring by-products. Food Bioprocess Technol. 11(9), 1733–1749 (2018). https://doi.org/10.1007/s11947-018-2138-x

    Article  Google Scholar 

  52. Priatni, S., Harimadi, K., Buana, E., Kosasih, W., Rohmatussolihat, R.: Production and characterization of spray-dried swamp eel (Monopterus albus) protein hydrolysate prepared by papain. Sains Malays. 49(3), 545–552 (2020). https://doi.org/10.17576/jsm-2020-4903-09

    Article  Google Scholar 

  53. Hamzah, M., Shaik, M.I., Sarbon, N.M.: Effect of fish protein hydrolysate on physicochemical properties and oxidative stability of shortfin scad (Decapterus macrosoma) emulsion sausage. Food Res. 5(3), 225–235 (2021)

    Article  Google Scholar 

  54. Yang, M., Liang, Z., Wang, L., Qi, M., Luo, Z., Li, L.: Microencapsulation delivery system in food industry—challenge and the way forward. Adv. Polym. Technol. (2020). https://doi.org/10.1155/2020/7531810

    Article  Google Scholar 

  55. Comunian, T.A., da Silva Anthero, A.G., Bezerra, E.O., Moraes, I.C.F., Hubinger, M.D.: Encapsulation of pomegranate seed oil by emulsification followed by spray drying: evaluation of different biopolymers and their effect on particle properties. Food Bioprocess Technol. 13(1), 53–66 (2020). https://doi.org/10.1007/s11947-019-02380-1

    Article  Google Scholar 

  56. Sarabandi, K., Mahoonak, A.S., Hamishekar, H., Ghorbani, M., Jafari, S.M.: Microencapsulation of casein hydrolysates: physicochemical, antioxidant and microstructure properties. J. Food Eng. 237, 86–95 (2018). https://doi.org/10.1016/j.jfoodeng.2018.05.036

    Article  Google Scholar 

  57. Hassan, M.A., Deepitha, R.P., Xavier, K.M., Gupta, S., Nayak, B.B., Balange, A.K.: Evaluation of the properties of spray dried visceral protein hydrolysate from Pangasianodon hypophthalmus (Sauvage, 1978) extracted by enzymatic and chemical methods. Waste Biomass Valoriz. 10(9), 2547–2558 (2018). https://doi.org/10.1007/s12649-018-0302-1

    Article  Google Scholar 

  58. Wang, B., Li, L., Chi, C.F., Ma, J.H., Luo, H.Y., Xu, Y.F.: Purification and characterization of a novel antioxidant peptide derived from blue mussel (Mytilus edulis) protein hydrolysate. Food Chem. 138(2–3), 1713–1719 (2013). https://doi.org/10.1016/j.foodchem.2012.12.002

    Article  Google Scholar 

  59. Vázquez, J.A., Meduíña, A., Durán, A.I., Nogueira, M., Fernández-Compás, A., Pérez-Martín, R.I., Rodríguez-Amado, I.: Production of valuable compounds and bioactive metabolites from by-products of fish discards using chemical processing, enzymatic hydrolysis and bacterial fermentation. Mar. Drugs 17(3), 139 (2019). https://doi.org/10.3390/md17030139

    Article  Google Scholar 

  60. Lima, K.O., de Quadros, C.D.C., da Rocha, M., de Lacerda, J.T.J.G., Juliano, M.A., Dias, M., Prentice, C.: Bioactivity and bioaccessibility of protein hydrolyzates from industrial byproducts of stripped weakfish (Cynoscion guatucupa). LWT 111, 408–413 (2019). https://doi.org/10.1016/j.lwt.2019.05.043

    Article  Google Scholar 

  61. You, L., Zhao, M., Regenstein, J.M., Ren, J.: Changes in the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates during a simulated gastrointestinal digestion. Food Chem. 120, 810–816 (2010). https://doi.org/10.1016/j.foodchem.2009.11.018

    Article  Google Scholar 

  62. Rosenberg, M., Rosenberg, Y., Frenkel, F.: Microencapsulation of model oil in wall matrices consisting of SPI and maltodextrins. AIMS Agric. Food 1(1), 33–51 (2016). https://doi.org/10.3934/agrfood.2016.1.33

    Article  Google Scholar 

  63. Annamalai, J., Aliyamveetil Abubacker, Z., Lakshmi, N.M., Unnikrishnan, P.: Microencapsulation of fish oil using fish protein hydrolysate, maltodextrin, and gum Arabic: effect on structural and oxidative stability. J. Aquat. Food Prod. Technol. 29(3), 293–306 (2020). https://doi.org/10.1080/10498850.2020.1723765

    Article  Google Scholar 

  64. Gómez-Mascaraque, L.G., Miralles, B., Recio, I., López-Rubio, A.: Microencapsulation of a whey protein hydrolysate within micro-hydrogels: impact on gastrointestinal stability and potential for functional yoghurt development. J. Funct. Foods 26, 290–300 (2016). https://doi.org/10.1016/j.jff.2016.08.006

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Biotechnology, Government of India [Grant Number BT/IN/INNO-INDIGO/12/NK/2017-18]; The Research Council of Norway [Grant Number 281262].

Funding

This work was supported by the Department of Biotechnology [Grant Number BT/IN/INNO-INDIGO/12/NK/2017-18]; The Research Council of Norway [Grant Number 281262].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: NK, RS; Methodology: NK, RS, AK; Formal analysis: NK, AK, RS; Investigation: NK, RS, AK, K; Writing—original draft preparation—review and editing: AK, NK, RS; Review Draft: NK, RS, AK, K; Funding acquisition: NK, RS.

Corresponding author

Correspondence to Nutan Kaushik.

Ethics declarations

Conflict of interest

All authors states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, A., Kaushik, N., Slizyte, R. et al. Production and Microencapsulation of Protein Hydrolysate of Pink Perch (Nemipterus japonicus) By-Products Obtained from Surimi Industry for Its Sustainable Utilization. Waste Biomass Valor 14, 209–226 (2023). https://doi.org/10.1007/s12649-022-01853-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01853-3

Keywords

Navigation