Skip to main content

Advertisement

Log in

Facile Synthesis a Potential Nitrogen-Enriched Weathered Coal Fertilizer: Excellent Slow-Release Performance and Improving Plant Quality

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Based on weathered coal (WC), a new type of nitrogen-enriched weathered coal fertilizer (NCF) was synthesized herein using hydrogen peroxide and urea in a closed container. Inductively coupled plasma mass spectrometry, elemental analysis, scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Contact angle, Zeta potential and X-ray diffraction (XRD) measurements were performed; the obtained results showed that NCF has potential slow-release nitrogen properties. Additionally, the FTIR and XPS measurements revealed that NCF has various oxygen-containing active functional groups along with nitrogen-containing groups. A soil leaching test and the release kinetic model fitting of total nitrogen showed that NCF released nitrogen more slowly and over a longer time than urea, with nitrogen still being released after 70 days. Further, a mechanism study was performed, which revealed that NCF has a dual release performance that is similar to that of biochar and “dissolved black nitrogen.” Moreover, the total nitrogen release behavior of NCF was dominated by the multi-effects of the coal carbon carrier, including electrostatic attraction, the unconventional formation of hydrogen bonds, and decomposition of the nitrogen-containing groups. Furthermore, the application of NCF in both soil types (Lou and Loessal soil) stimulated the germination rate of spinach seeds and improved the chloroplast pigment content as well as the nutritional quality of spinach leaves. These results suggest that abandoned weathered coal may be fully utilized in the mining area and that NCF may have promising potential in improving plant quality and sustainable agriculture applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

FTIR:

Fourier-transform infrared spectroscopy

NCF:

Nitrogen-enriched weathered coal fertilizer

SEM:

Scanning electron microscopy

TG:

Thermogravimetric analysis

TN:

Total nitrogen content

WC:

Weathered coal

WCA:

Water contact angle

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

CK:

The standard soil

References

  1. Zhan, H., Yin, X., Huang, Y., Yuan, H., Wu, C.: Precursors evolving during rapid pyrolysis of lignocellulosic industrial biomass wastes-no x. Fuel 207, 438–448 (2017). https://doi.org/10.1016/j.fuel.2017.06.046

    Article  Google Scholar 

  2. Zhang, S., Yuan, L., Li, W., Lin, Z., Li, Y., Hu, S., Zhao, B.: Characterization of pH-fractionated humic acids derived from Chinese weathered coal. Chemosphere 166, 334–342 (2017). https://doi.org/10.1016/j.chemosphere.2016.09.095

    Article  Google Scholar 

  3. Carneiro, J.S.D.S., Lustosa Filho, J.F., Nardis, B.O., Ribeiro-Soares, J., Zinn, Y.L., Melo, L.C.A.: Carbon stability of engineered biochar-based phosphate fertilizers. ACS Sustain. Chem. Eng. 6, 14203–14212 (2018). https://doi.org/10.1021/acssuschemeng.8b02841

    Article  Google Scholar 

  4. Wu, W., Yan, B., Sun, Y., Zhong, L., Lu, W., Chen, G.: Potential of yak dung-derived hydrochar as fertilizer: mechanism and model of controlled release of nitrogen. Sci. Total Environ. 781, 146665 (2021). https://doi.org/10.1016/j.scitotenv.2021.146665

    Article  Google Scholar 

  5. Dinh, V.C., Hou, C.H., Dao, T.N.: O, N-doped porous biochar by air oxidation for enhancing heavy metal removal: the role of O, N functional groups. Chemosphere 293, 133622 (2022). https://doi.org/10.1016/j.chemosphere.2022.133622

    Article  Google Scholar 

  6. Mian, M.M., Liu, G., Yousaf, B., Fu, B., Ullah, H., Ali, M.U., Abbas, Q., Mujtaba Munir, M.A., Ruijia, L.: Simultaneous functionalization and magnetization of biochar via NH3 ambiance pyrolysis for efficient removal of Cr (VI). Chemosphere 208, 712–721 (2018). https://doi.org/10.1016/j.chemosphere.2018.06.021

    Article  Google Scholar 

  7. Wan, Z., Sun, Y., Tsang, D.C.W., Khan, E., Yip, A.C.K., Ng, Y.H., Rinklebe, J., Ok, Y.S.: Customised fabrication of nitrogen-doped biochar for environmental and energy applications. Chem. Eng. J. 401, 126136 (2020). https://doi.org/10.1016/j.cej.2020.126136

    Article  Google Scholar 

  8. Wu, D., Song, W., Chen, L., Duan, X., Xia, Q., Fan, X., Li, Y., Zhang, F., Peng, W., Wang, S.: High-performance porous graphene from synergetic nitrogen doping and physical activation for advanced nonradical oxidation. J. Hazard. Mater. 381, 121010 (2020). https://doi.org/10.1016/j.jhazmat.2019.121010

    Article  Google Scholar 

  9. Yu, W., Lian, F., Cui, G., Liu, Z.: N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution. Chemosphere 193, 8–16 (2018). https://doi.org/10.1016/j.chemosphere.2017.10.134

    Article  Google Scholar 

  10. Zhou, Q., Jiang, X., Li, X., Jia, C.Q., Jiang, W.: Preparation of high-yield N-doped biochar from nitrogen-containing phosphate and its effective adsorption for toluene. RSC Adv. 8, 30171–30179 (2018). https://doi.org/10.1039/C8RA05714A

    Article  Google Scholar 

  11. Zhu, S., Huang, X., Ma, F., Wang, L., Duan, X., Wang, S.: Catalytic removal of aqueous contaminants on n-doped graphitic biochars: Inherent roles of adsorption and nonradical mechanisms. Environ. Sci. Technol. 52, 8649–8658 (2018). https://doi.org/10.1021/acs.est.8b01817

    Article  Google Scholar 

  12. Bi, D., Huang, F., Jiang, M., He, Z., Lin, X.: Effect of pyrolysis conditions on environmentally persistent free radicals (EPFRs) in biochar from co-pyrolysis of urea and cellulose. Sci. Total Environ. 805, 150339 (2022). https://doi.org/10.1016/j.scitotenv.2021.150339

    Article  Google Scholar 

  13. Hulicova-Jurcakova, D., Seredych, M., Lu, G.Q., Bandosz, T.J.: Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 19, 438–447 (2009). https://doi.org/10.1002/adfm.200801236

    Article  Google Scholar 

  14. Liu, S.H., Huang, Y.Y.: Valorization of coffee grounds to biochar-derived adsorbents for CO2 adsorption. J. Clean. Prod. 175, 354–360 (2018). https://doi.org/10.1016/j.jclepro.2017.12.076

    Article  Google Scholar 

  15. Zhang, F., Liu, T., Zhang, J., Cui, E., Yue, L., Jiang, R., Hou, G.: The potassium hydroxide-urea synergy in improving the capacitive energy-storage performance of agar-derived carbon aerogels. Carbon 147, 451–459 (2019). https://doi.org/10.1016/j.carbon.2019.03.011

    Article  Google Scholar 

  16. Oh, W.D., Lisak, G., Webster, R.D., Liang, Y.N., Veksha, A., Giannis, A., Moo, J.G.S., Lim, J.W., Lim, T.T.: Insights into the thermolytic transformation of lignocellulosic biomass waste to redox-active carbocatalyst: durability of surface active sites. Appl. Catal. B 233, 120–129 (2018). https://doi.org/10.1016/j.apcatb.2018.03.106

    Article  Google Scholar 

  17. Oh, W.D., Lok, L.W., Veksha, A., Giannis, A., Lim, T.T.: Enhanced photocatalytic degradation of bisphenol A with Ag-decorated S-doped g-C3N4 under solar irradiation: performance and mechanistic studies. Chem. Eng. J. 333, 739–749 (2018). https://doi.org/10.1016/j.cej.2017.09.182

    Article  Google Scholar 

  18. Wang, C., Wang, J., Wu, W., Qian, J., Song, S., Yue, Z.: Feasibility of activated carbon derived from anaerobic digester residues for supercapacitors. J. Power Sour. 412, 683–688 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.092

    Article  Google Scholar 

  19. Wang, H., Guo, W., Liu, B., Wu, Q., Luo, H., Zhao, Q., Si, Q., Sseguya, F., Ren, N.: Edge-nitrogenated biochar for efficient peroxydisulfate activation: an electron transfer mechanism. Water Res. 160, 405–414 (2019). https://doi.org/10.1016/j.watres.2019.05.059

    Article  Google Scholar 

  20. Wang, Y., Chen, L., Chen, C., Xi, J., Cao, H., Duan, X., Xie, Y., Song, W., Wang, S.: Occurrence of both hydroxyl radical and surface oxidation pathways in N-doped layered nanocarbons for aqueous catalytic ozonation. Appl. Catal. B 254, 283–291 (2019). https://doi.org/10.1016/j.apcatb.2019.05.008

    Article  Google Scholar 

  21. Zaeni, J.R.J., Lim, J.W., Wang, Z., Ding, D., Chua, Y.S., Ng, S.L., Oh, W.D.: In situ nitrogen functionalization of biochar via one-pot synthesis for catalytic peroxymonosulfate activation: characteristics and performance studies. Sep. Purif. Technol. 241, 116702 (2020). https://doi.org/10.1016/j.seppur.2020.116702

    Article  Google Scholar 

  22. Fageria, N.K., Baligar, V.C.: Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 88, 97–185 (2005). https://doi.org/10.1016/S0065-2113(05)88004-6

    Article  Google Scholar 

  23. Saha, B.K., Rose, M.T., Wong, V.N.L., Cavagnaro, T.R., Patti, A.F.: A slow release brown coal-urea fertiliser reduced gaseous N loss from soil and increased silver beet yield and N uptake. Sci. Total Environ. 649, 793–800 (2019). https://doi.org/10.1016/j.scitotenv.2018.08.145

    Article  Google Scholar 

  24. Rose, M.T., Perkins, E.L., Saha, B.K., Tang, E.C.W., Cavagnaro, T.R., Jackson, W.R., Hapgood, K.P., Hoadley, A.F.A., Patti, A.F.: A slow release nitrogen fertiliser produced by simultaneous granulation and superheated steam drying of urea with brown coal. Chem. Biol. Technol. Agric. 3, 4842 (2016). https://doi.org/10.1186/s40538-016-0062-8

    Article  Google Scholar 

  25. Saha, B.K., Rose, M.T., Wong, V.N.L., Cavagnaro, T.R., Patti, A.F.: Hybrid brown coal-urea fertiliser reduces nitrogen loss compared to urea alone. Sci. Total Environ. 601–602, 1496–1504 (2017). https://doi.org/10.1016/j.scitotenv.2017.05.270

    Article  Google Scholar 

  26. Chen, S., Yang, M., Ba, C., Yu, S., Jiang, Y., Zou, H., Zhang, Y.: Preparation and characterization of slow-release fertilizer encapsulated by biochar-based waterborne copolymers. Sci. Total Environ. 615, 431–437 (2018). https://doi.org/10.1016/j.scitotenv.2017.09.209

    Article  Google Scholar 

  27. González, M.E., Cea, M., Medina, J., González, A., Diez, M.C., Cartes, P., Monreal, C., Navia, R.: Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material. Sci. Total Environ. 505, 446–453 (2015). https://doi.org/10.1016/j.scitotenv.2014.10.014

    Article  Google Scholar 

  28. Jiao, G.J., Peng, P., Sun, S.L., Geng, Z.C., She, D.: Amination of biorefinery technical lignin by Mannich reaction for preparing highly efficient nitrogen fertilizer. Int. J. Biol. Macromol. 127, 544–554 (2019). https://doi.org/10.1016/j.ijbiomac.2019.01.076

    Article  Google Scholar 

  29. Yamamoto, C.F., Pereira, E.I., Mattoso, L.H.C., Matsunaka, T., Ribeiro, C.: Slow release fertilizers based on urea/urea-formaldehyde polymer nanocomposites. Chem. Eng. J. 287, 390–397 (2016). https://doi.org/10.1016/j.cej.2015.11.023

    Article  Google Scholar 

  30. Fargašová, A., Molnárová, M.: Assessment of Cr and Ni phytotoxicity from cutlery-washing waste-waters using biomass and chlorophyll production tests on mustard Sinapis alba L. seedlings. Environ. Sci. Pollut. Res. 17, 187–194 (2010). https://doi.org/10.1007/s11356-009-0136-2

    Article  Google Scholar 

  31. Zobiole, L.H.S., Bonini, E.A., de Oliveira, R.S., Kremer, R.J., Ferrarese-Filho, O.: Glyphosate affects lignin content and amino acid production in glyphosate-resistant soybean. Acta Physiol. Plant. 32(5), 831–837 (2010). https://doi.org/10.1007/s11738-010-0467-0

    Article  Google Scholar 

  32. Cintya, H., Silalahi, J., Putra, E.D.L., Siburian, R.: The influence of fertilizer on nitrate, nitrite and vitamin C contents in vegetables. Orient. J. Chem. 34(5), 2614 (2018). https://doi.org/10.13005/ojc/340552

    Article  Google Scholar 

  33. Razmjooei, F., Singh, K.P., Song, M.Y., Yu, J.S.: Enhanced electrocatalytic activity due to additional phosphorous doping in nitrogen and sulfur-doped graphene: a comprehensive study. Carbon 78, 257–267 (2014). https://doi.org/10.1016/j.carbon.2014.07.002

    Article  Google Scholar 

  34. Merline, D.J., Vukusic, S., Abdala, A.A.: Melamine formaldehyde: curing studies and reaction mechanism. Polym. J. 45, 413–419 (2012). https://doi.org/10.1038/pj.2012.162

    Article  Google Scholar 

  35. Lin, Z., Waller, G., Liu, Y., Liu, M., Wong, C.-P.: Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv. Energy Mater. 2, 884–888 (2012). https://doi.org/10.1002/aenm.201200038

    Article  Google Scholar 

  36. Smith, M., Scudiero, L., Espinal, J., McEwen, J.-S., Garcia-Perez, M.: Improving the deconvolution and interpretation of XPS spectra from chars by ab initio calculations. Carbon 110, 155–171 (2016). https://doi.org/10.1016/j.carbon.2016.09.012

    Article  Google Scholar 

  37. Wan, L., Wang, J., Xie, L., Sun, Y., Li, K.: Nitrogen-enriched hierarchically porous carbons prepared from polybenzoxazine for high-performance supercapacitors. ACS Appl. Mater. Interfaces 6, 15583–15596 (2014). https://doi.org/10.1021/am504564q

    Article  Google Scholar 

  38. Ma, D., Zhang, G., Areeprasert, C., Li, C., Shen, Y., Yoshikawa, K., Xu, G.: Characterization of NO emission in combustion of hydrothermally treated antibiotic mycelial residue. Chem. Eng. J. 284, 708–715 (2016). https://doi.org/10.1016/j.cej.2015.08.149

    Article  Google Scholar 

  39. Pietrzak, R.: XPS study and physico-chemical properties of nitrogen-enriched microporous activated carbon from high volatile bituminous coal. Fuel 88, 1871–1877 (2009). https://doi.org/10.1016/j.fuel.2009.04.017

    Article  Google Scholar 

  40. Zhan, H., Zhuang, X., Song, Y., Yin, X., Wu, C.: Insights into the evolution of fuel-N to NO x precursors during pyrolysis of N-rich nonlignocellulosic biomass. Appl. Energy 219, 20–33 (2018). https://doi.org/10.1016/j.apenergy.2018.03.015

    Article  Google Scholar 

  41. Yan, J., Lei, Z., Li, Z., Wang, Z., Ren, S., Kang, S., Shui, H.: Molecular structure characterization of low-medium rank coals via XRD, solid state 13C NMR and FTIR spectroscopy. Fuel 268, 117038 (2020). https://doi.org/10.1016/j.fuel.2020.117038

    Article  Google Scholar 

  42. Jiang, J., Yang, W., Cheng, Y., Liu, Z., Zhang, Q., Zhao, K.: Molecular structure characterization of middle-high rank coal via XRD, Raman and FTIR spectroscopy: implications for coalification. Fuel 239, 559–572 (2019). https://doi.org/10.1016/j.fuel.2018.11.057

    Article  Google Scholar 

  43. Lu, L., Sahajwalla, V., Kong, C., Harris, D.: Quantitative X-ray diffraction analysis and its application to various coals. Carbon 39, 1821–1833 (2001). https://doi.org/10.1016/S0008-6223(00)00318-3

    Article  Google Scholar 

  44. Lievens, C., Ci, D.H., Bai, Y., Ma, L., Zhang, R., Chen, J.Y., Gai, Q.Q., Long, Y.H., Guo, X.F.: A study of slow pyrolysis of one low rank coal via pyrolysis–GC/MS. Fuel Process. Technol. 116, 85–93 (2013). https://doi.org/10.1016/j.fuproc.2013.04.026

    Article  Google Scholar 

  45. Kwok, D.Y., Neumann, A.W.: Contact angle measurement and contact angle interpretation. Adv. Coll. Interface Sci. 81, 167–249 (1999). https://doi.org/10.1016/S0001-8686(98)00087-6

    Article  Google Scholar 

  46. Wang, S.T., Liu, K.S., Yao, X., Jiang, L.: Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chem. Rev. 115, 8230–8293 (2015). https://doi.org/10.1021/cr400083y

    Article  Google Scholar 

  47. Zhao, L., Cao, X., Zheng, W., Wang, Q., Yang, F.: Endogenous minerals have influences on surface electrochemistry and ion exchange properties of biochar. Chemosphere 136, 133–139 (2015). https://doi.org/10.1016/j.chemosphere.2015.04.053

    Article  Google Scholar 

  48. Batista, E.M.C.C., Shultz, J., Matos, T.T.S., Fornari, M.R., Ferreira, T.M., Szpoganicz, B., Freitas, R.A., Mangrich, A.S.: Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Sci. Rep. 8, 10677 (2018). https://doi.org/10.1038/s41598-018-28794-z

    Article  Google Scholar 

  49. Wang, H., Chen, X., Zhang, L., Li, Z., Fan, X., Sun, S.: Efficient production of lignin-based slow-release nitrogen fertilizer via microwave heating. Ind. Crops Prod. 166, 113481 (2021). https://doi.org/10.1016/j.indcrop.2021.113481

    Article  Google Scholar 

  50. Liu, Z.X., Liu, Z.C., Zong, Z.M., Wei, X.Y., Wang, J., Lee, C.W.: GC/MS analysis of water-soluble products from the mild oxidation of Longkou brown coal with H2O2. Energy Fuels 17, 424–426 (2003). https://doi.org/10.1021/ef020071e

    Article  Google Scholar 

  51. Xia, W.: The effect of heating on the wettability of lignite. Energy Sour. A 38, 3521–3526 (2016). https://doi.org/10.1080/15567036.2016.1194914

    Article  Google Scholar 

  52. Chen, S., Tang, L., Tao, X., Chen, L., Yang, Z., Li, L.: Effect of oxidation processing on the surface properties and floatability of Meizhiyou long-flame coal. Fuel 210, 177–186 (2017). https://doi.org/10.1016/j.fuel.2017.08.053

    Article  Google Scholar 

  53. Xu, M., Xing, Y., Gui, X., Cao, Y., Wang, D., Wang, L.: Effect of ultrasonic pretreatment on oxidized coal flotation. Energy Fuels 31, 14367–14373 (2017). https://doi.org/10.1021/acs.energyfuels.7b02115

    Article  Google Scholar 

  54. Chen, W., Yang, H., Chen, Y., Chen, X., Fang, Y., Chen, H.: Biomass pyrolysis for nitrogen-containing liquid chemicals and nitrogen-doped carbon materials. J. Anal. Appl. Pyrol. 120, 186–193 (2016). https://doi.org/10.1016/j.jaap.2016.05.004

    Article  Google Scholar 

  55. Li, Z., Liu, J., Xia, C., Li, F.: Nitrogen-functionalized ordered mesoporous carbons as multifunctional supports of ultrasmall Pd nanoparticles for hydrogenation of phenol. ACS Catal. 3, 2440–2448 (2013). https://doi.org/10.1021/cs400506q

    Article  Google Scholar 

  56. Peng, W., Zhang, H., Lü, F., Shao, L., He, P.: From food waste and its digestate to nitrogen self-doped char and methane-rich syngas: evolution of pyrolysis products during autogenic pressure carbonization. J. Hazard. Mater. 424, 127249 (2022). https://doi.org/10.1016/j.jhazmat.2021.127249

    Article  Google Scholar 

  57. Maghsoodi, M.R., Najafi, N., Reyhanitabar, A., Oustan, S.: Hydroxyapatite nanorods, hydrochar, biochar, and zeolite for controlled-release urea fertilizers. Geoderma 379, 114644 (2020). https://doi.org/10.1016/j.geoderma.2020.114644

    Article  Google Scholar 

  58. Spokas, K.A., Novak, J.M., Venterea, R.T.: Biochar’s role as an alternative N-fertilizer: ammonia capture. Plant Soil 350, 35–42 (2011)

    Article  Google Scholar 

  59. Taghizadeh-Toosi, A., Clough, T.J., Sherlock, R.R., Condron, L.M.: A wood based low-temperature biochar captures NH3-N generated from ruminant urine-N, retaining its bioavailability. Plant Soil 353, 73–84 (2011). https://doi.org/10.1007/s11104-011-1010-9

    Article  Google Scholar 

  60. Mukherjee, A., Zimmerman, A.R., Harris, W.: Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163, 247–255 (2011). https://doi.org/10.1016/j.geoderma.2011.04.021

    Article  Google Scholar 

  61. Kammann, C.I., Schmidt, H.P., Messerschmidt, N., Linsel, S., Steffens, D., Müller, C., Koyro, H.-W., Conte, P., Joseph, S.: Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci. Rep. 5, 11080 (2015). https://doi.org/10.1038/srep11080

    Article  Google Scholar 

  62. Zhang, H., Voroney, R.P., Price, G.W.: Effects of temperature and processing conditions on biochar chemical properties and their influence on soil C and N transformations. Soil Biol. Biochem. 83, 19–28 (2015). https://doi.org/10.1016/j.soilbio.2015.01.006

    Article  Google Scholar 

  63. Zhu, D., Pignatello, J.J.: Characterization of Aromatic Compound Sorptive Interactions with Black Carbon (Charcoal) Assisted by Graphite as a Model. Environ. Sci. Technol. 39, 2033–2041 (2005). https://doi.org/10.1021/es0491376

    Article  Google Scholar 

  64. De la Rosa, J.M., Knicker, H.: Bioavailability of N released from N-rich pyrogenic organic matter: an incubation study. Soil Biol. Biochem. 43, 2368–2373 (2011). https://doi.org/10.1016/j.soilbio.2011.08.008

    Article  Google Scholar 

  65. Lian, F., Zhang, Y.K., Gu, S.G., Han, Y.R., Cao, X.S., Wang, Z.Y., Xing, B.S.: Photochemical transformation and catalytic activity of dissolved black nitrogen released from environmental black carbon. Environ. Sci. Technol. 55, 6476–6484 (2021). https://doi.org/10.1021/acs.est.1c00392

    Article  Google Scholar 

  66. Liu, X., Liao, J., Song, H., Yang, Y., Guan, C., Zhang, Z.: A Biochar-based route for environmentally friendly controlled release of nitrogen: urea-loaded biochar and bentonite composite. Sci. Rep. 9, 9548 (2019). https://doi.org/10.1038/s41598-019-46065-3

    Article  Google Scholar 

Download references

Funding

This research was supported by the STS (Science and Technology Service Network Initiative) Program (KFJ-STS-QYZD-177), Innovation Chain of Key Industries-Social Development (2020ZDLSF06-09) and Innovation Chain of Key Industries- Agricultural Sector(2020ZDLNY01-08).

Author information

Authors and Affiliations

Authors

Contributions

XL, JZ and DS contributed to the conception and design of the study. XL, PZ, HJ, TJ, and HZ preformed the experiments and theoretical calculations, organized the database, and wrote the first draft of the manuscript.

Corresponding author

Correspondence to Diao She.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article. II. Product Based: artificial fertilizers; IV. Process Based: waste-recycling;

Research Involving Human and Animal Rights

Uninvolved

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., She, D., Zhao, P. et al. Facile Synthesis a Potential Nitrogen-Enriched Weathered Coal Fertilizer: Excellent Slow-Release Performance and Improving Plant Quality. Waste Biomass Valor 13, 4685–4700 (2022). https://doi.org/10.1007/s12649-022-01778-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01778-x

Keywords

Navigation