Skip to main content
Log in

Enhanced Cellulase Production by Talaromyces amestolkiae CMIAT055 Using Banana Pseudostem

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Cellulases are a complex of enzymes necessary for the complete solubilization of cellulose in sugars, thus playing a key role in the natural carbon cycle through the hydrolysis of lignocellulosic structures. The aim of this study was to evaluate the increase in the capacity of Talaromyces amestolkiae CMIAT 055 to produce cellulases by optimizing the components of the culture medium containing banana pseudostem as an inducer, as well as in different agitation configurations in a bioreactor. Optimization was performed through statistical experimental design (Plackett–Burman and DCCR), a study of pH control in bioreactors, and a study of the agitation system by comparing impellers with different flow profiles in the liquid medium. For this purpose, a wild strain of Talaromyces amestolkiae CMIAT 055 was used. In the Plackett–Burman and DCCR statistical design, four components of the culture medium were significant and optimized for greater synthesis of FPase: banana pseudostem, CaCl2, KH2PO4, and urea. In bioreactors tests, these parameters were beneficial for greater enzyme activities: maintenance of pH at 5.0, use of Pitched blade impeller, and rotation speed at 300 rpm. Comparing the first test using banana pseudostem in an Erlenmeyer flask to the last fermentation process in bioreactors, it was observed that the total cellulase activity increased from 424.7 to 2172.8 FPU/L. This fact showed that the strategies adopted in this study are a pertinent way to reduce the cost of enzyme production through the use of lignocellulosic materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Juturu, V., Wu, J.C.: Microbial cellulases: engineering, production and applications. Renew. Sustain. Energy Rev. 33, 188–203 (2014). https://doi.org/10.1016/j.rser.2014.01.077

    Article  Google Scholar 

  2. Siqueira, J.G.W., Rodrigues, C., de Souza Vandenberghe, L.P., Woiciechowski, A.L., Soccol, C.R.: Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: a review. Biomass Bioenergy 132, 105419 (2020). https://doi.org/10.1016/j.biombioe.2019.105419

    Article  Google Scholar 

  3. Schuster, A., Schmoll, M.: Biology and biotechnology of Trichoderma. Appl. Microbiol. Biotechnol. 87, 787–799 (2010). https://doi.org/10.1007/s00253-010-2632-1

    Article  Google Scholar 

  4. Maheshwari, R., Bharadwaj, G., Bhat, M.K.: Thermophilic fungi: their physiology and enzymes. Microbiol. Mol. Biol. Rev. 64, 461–488 (2000)

    Article  Google Scholar 

  5. Orencio-Trejo, M., Torres-Granados, J., Rangel-Lara, A., Beltrán-Guerrero, E., García-Aguilar, S., Moss-Acosta, C., Valenzuela-Soto, H., De la Torre-Zavala, S., Gastelum-Arellanez, A., Martinez, A., Tiessen, A., Diaz-Mireles, E., Lozoya-Gloria, E.: Cellulase and xylanase production by the mexican strain Talaromyces stollii LV186 and its application in the saccharification of pretreated corn and sorghum stover. BioEnergy Res. 9, 1034–1045 (2016). https://doi.org/10.1007/s12155-016-9791-6

    Article  Google Scholar 

  6. Fujii, T., Hoshino, T., Inoue, H., Yano, S.: Taxonomic revision of the cellulose-degrading fungus Acremonium cellulolyticus nomen nudum to Talaromyces based on phylogenetic analysis. FEMS Microbiol. Lett. 351, 32–41 (2014). https://doi.org/10.1111/1574-6968.12352

    Article  Google Scholar 

  7. Gusakov, A.V.: Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol. 29, 419–425 (2011). https://doi.org/10.1016/j.tibtech.2011.04.004

    Article  Google Scholar 

  8. Nieto-Domínguez, M., de Eugenio, L.I., Barriuso, J., Prieto, A., Fernández de Toro, B., Canales-Mayordomo, Á., Martínez, M.J.: Novel pH-Stable glycoside hydrolase family 3 β-Xylosidase from Talaromyces amestolkiae: an enzyme displaying regioselective transxylosylation. Appl. Environ. Microbiol. 81, 6380–6392 (2015). https://doi.org/10.1128/AEM.01744-15

    Article  Google Scholar 

  9. Srivastava, N., Srivastava, M., Mishra, P.K., Gupta, V.K., Molina, G., Rodriguez-Couto, S., Manikanta, A., Ramteke, P.W.: Applications of fungal cellulases in biofuel production: advances and limitations. Renew. Sustain. Energy Rev. 82, 2379–2386 (2018). https://doi.org/10.1016/j.rser.2017.08.074

    Article  Google Scholar 

  10. Mandels, M., Reese, E.T.: Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J. Bacteriol. 73, 269–278 (1957). https://doi.org/10.1128/JB.73.2.269-278.1957

    Article  Google Scholar 

  11. Mandels, M., Weber, J.: The production of cellulases. In: Cellulases and Their Applications, pp. 391–414. American Chemical Society, Washington (1969)

    Chapter  Google Scholar 

  12. Adekunle, A., Orsat, V., Raghavan, V.: Lignocellulosic bioethanol: a review and design conceptualization study of production from cassava peels. Renew. Sustain. Energy Rev. 64, 518–530 (2016). https://doi.org/10.1016/j.rser.2016.06.064

    Article  Google Scholar 

  13. Kuhad, R.C., Deswal, D., Sharma, S., Bhattacharya, A., Jain, K.K., Kaur, A., Pletschke, B.I., Singh, A., Karp, M.: Revisiting cellulase production and redefining current strategies based on major challenges. Renew. Sustain. Energy Rev. 55, 249–272 (2016). https://doi.org/10.1016/j.rser.2015.10.132

    Article  Google Scholar 

  14. Folan, M.A., Michael, P.: The saccharifying ability of the cellulase complex of Talaromyces emersonii and comparison with that of other fungal species. Int. J. Biochem. 10, 505–510 (1979). https://doi.org/10.1016/0020-711X(79)90006-5

    Article  Google Scholar 

  15. Moloney, A.P., Considine, P.J., Coughlan, M.P.: Cellulose hydrolysis by the cellulases produced by Talaromyces emersonii when grown on different inducing substrates. Biotechnol. Bioeng. 25, 1169–1173 (1983)

    Article  Google Scholar 

  16. Mallek-Fakhfakh, H., Fakhfakh, J., Masmoudi, N., Fatma, R., Gargouri, A., Belghith, H.: Agricultural wastes as substrates for β-glucosidase production by Talaromyces thermophilus: role of these enzymes in enhancing waste paper saccharification. Prep. Biochem. Biotechnol. 47, 414–423 (2017). https://doi.org/10.1080/10826068.2016.1252928

    Article  Google Scholar 

  17. Arora, S., Rani, R., Ghosh, S.: Bioreactors in solid state fermentation technology: design, applications and engineering aspects. J. Biotechnol. 269, 16–34 (2018). https://doi.org/10.1016/j.jbiotec.2018.01.010

    Article  Google Scholar 

  18. Ghobadi, N., Ogino, C., Yamabe, K., Ohmura, N.: Characterizations of the submerged fermentation of Aspergillus oryzae using a Fullzone impeller in a stirred tank bioreactor. J. Biosci. Bioeng. 123, 101–108 (2017). https://doi.org/10.1016/j.jbiosc.2016.07.001

    Article  Google Scholar 

  19. AOAC: Official Methods of Analysis of the Association of Official Analytical Chemists. AOAC, Rockville (1990)

    Google Scholar 

  20. Kornerup, A, Wanscher, J.H.: Methuen Handbook of Colour. (1967)

  21. Glass, N.L., Donaldson, G.C.: Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61, 1323–1330 (1995)

    Article  Google Scholar 

  22. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S.: MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013). https://doi.org/10.1093/molbev/mst197

    Article  Google Scholar 

  23. Visagie, C.M., Houbraken, J., Frisvad, J.C., Hong, S.-B., Klaassen, C.H.W., Perrone, G., Seifert, K.A., Varga, J., Yaguchi, T., Samson, R.A.: Identification and nomenclature of the genus Penicillium. Stud. Mycol. 78, 343–371 (2014). https://doi.org/10.1016/j.simyco.2014.09.001

    Article  Google Scholar 

  24. Jung, D.U., Yoo, H.Y., Kim, S.B., Lee, J.H., Park, C., Kim, S.W.: Optimization of medium composition for enhanced cellulase production by mutant Penicillium brasilianum KUEB15 using statistical method. J. Ind. Eng. Chem. 25, 145–150 (2015). https://doi.org/10.1016/j.jiec.2014.10.026

    Article  Google Scholar 

  25. Matkar, K., Chapla, D., Divecha, J., Nighojkar, A., Madamwar, D.: Production of cellulase by a newly isolated strain of Aspergillus sydowii and its optimization under submerged fermentation. Int. Biodeterior. Biodegrad. 78, 24–33 (2013). https://doi.org/10.1016/j.ibiod.2012.12.002

    Article  Google Scholar 

  26. Ghose, T.K.: Measurement of cellulase activities. Pure Appl. Chem. 59, 257–268 (1987)

    Article  Google Scholar 

  27. Miller, G.L.: Use of dinitrosalicylic acid reagent for the determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  28. Arendt, S.A., Bailey, S.J.: Section 7. Textiles 1: D76–D4391. In: Annual Book of ASTM Standards. (2005)

  29. TAPPI: T 222 om-02. Acid-insoluble lignin in wood and pulp. http://www.tappi.org/content/SARG/T222.pdf

  30. Ahamed, A., Vermette, P.: Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochem. Eng. J. 40, 399–407 (2008). https://doi.org/10.1016/j.bej.2007.11.030

    Article  Google Scholar 

  31. Yilmaz, N., Houbraken, J., Hoekstra, E.S., Frisvad, J.C., Visagie, C.M., Samson, R.A.: Delimitation and characterisation of Talaromyces purpurogenus and related species. Pers. Mol. Phylogeny Evol. Fungi. 29, 39–54 (2012). https://doi.org/10.3767/003158512X659500

    Article  Google Scholar 

  32. Gunny, A.A.N., Arbain, D., Jamal, P., Gumba, R.E.: Improvement of halophilic cellulase production from locally isolated fungal strain. Saudi J. Biol. Sci. (2014). https://doi.org/10.1016/j.sjbs.2014.11.021

    Article  Google Scholar 

  33. Rodríguez, M.D., Alonso Paiva, I.M., Castrillo, M.L., Zapata, P.D., Villalba, L.L.: KH2PO4 improves cellulase production of Irpex lacteus and Pycnoporus sanguineus. J. King Saud Univ. Sci. (2018). https://doi.org/10.1016/j.jksus.2018.07.009

    Article  Google Scholar 

  34. Samson, R.A., Pitt, J.I.: The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Mycologia 73, 582 (1981). https://doi.org/10.2307/3759616

    Article  Google Scholar 

  35. Han, X., Song, W., Liu, G., Li, Z., Yang, P., Qu, Y.: Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy. Bioresour. Technol. 227, 155–163 (2017). https://doi.org/10.1016/j.biortech.2016.11.079

    Article  Google Scholar 

  36. Li, Z.J., Shukla, V., Wenger, K.S., Fordyce, A.P., Pedersen, A.G., Marten, M.R.: Effects of increased impeller power in a production-scale Aspergillus oryzae fermentation. Biotechnol. Prog. 18, 437–444 (2002). https://doi.org/10.1021/bp020023c

    Article  Google Scholar 

  37. Li, C., Yang, Z., He Can Zhang, R., Zhang, D., Chen, S., Ma, L., Zhang, R.H.C., Zhang, D., Chen, S., Ma, L.: Effect of pH on cellulase production and morphology of Trichoderma reesei and the application in cellulosic material hydrolysis. J. Biotechnol. 168, 470–477 (2013). https://doi.org/10.1016/j.jbiotec.2013.10.003

    Article  Google Scholar 

  38. Tang, W., Pan, A., Lu, H., Xia, J., Zhuang, Y., Zhang, S., Chu, J., Noorman, H.: Improvement of glucoamylase production using axial impellers with low power consumption and homogeneous mass transfer. Biochem. Eng. J. 99, 167–176 (2015). https://doi.org/10.1016/j.bej.2015.03.025

    Article  Google Scholar 

  39. Buffo, M.M.M., Corrêa, L.J.J., Esperança, M.N.N., Cruz, A.J.G.J.G., Farinas, C.S.S., Badino, A.C.C.: Influence of dual-impeller type and configuration on oxygen transfer, power consumption, and shear rate in a stirred tank bioreactor. Biochem. Eng. J. 114, 130–139 (2016). https://doi.org/10.1016/j.bej.2016.07.003

    Article  Google Scholar 

  40. Villadsen, J., Nielsen, J., Lidén, G.: Scale-up of bioprocesses. In: Bioreaction Engineering Principles, pp. 497–546. Springer, Boston (2011)

    Chapter  Google Scholar 

  41. Ganesh, K., Joshi, J.B., Sawant, S.B.: Cellulase deactivation in a stirred reactor. Biochem. Eng. J. 4, 137–141 (2000). https://doi.org/10.1016/S1369-703X(99)00045-5

    Article  Google Scholar 

  42. Krull, R., Wucherpfennig, T., Esfandabadi, M.E., Walisko, R., Melzer, G., Hempel, D.C., Kampen, I., Kwade, A., Wittmann, C.: Characterization and control of fungal morphology for improved production performance in biotechnology. J. Biotechnol. 163, 112–123 (2013). https://doi.org/10.1016/j.jbiotec.2012.06.024

    Article  Google Scholar 

  43. Gabelle, J.-C., Jourdier, E., Licht, R.B., Ben Chaabane, F., Henaut, I., Morchain, J., Augier, F.: Impact of rheology on the mass transfer coefficient during the growth phase of Trichoderma reesei in stirred bioreactors. Chem. Eng. Sci. 75, 408–417 (2012). https://doi.org/10.1016/j.ces.2012.03.053

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by the CAPES (Coordination for the Improvement of Higher Education Personnel. Brazil), CNPq (National Council for Scientific and Technological Development. Brazil), and FUNCAP (Cearense Foundation for Support for Scientific and Technological Development). Also, authors would like to thank technical assistance received from Embrapa Agroindustry Tropical.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rilvia S. Santiago-Aguiar.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faheina Junior, G.S., Sousa, K.A., Zilli, J.E. et al. Enhanced Cellulase Production by Talaromyces amestolkiae CMIAT055 Using Banana Pseudostem. Waste Biomass Valor 13, 3535–3546 (2022). https://doi.org/10.1007/s12649-022-01736-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01736-7

Keywords

Navigation