Skip to main content

Advertisement

Log in

Process Simulation of Preparing Biochar by Biomass Pyrolysis Via Aspen Plus and Its Economic Evaluation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

China is a big agricultural country and generates a large amount of biomass wastes every year. Biomass is the only renewable carbon source, which can produce biochar through pyrolysis under anaerobic or hypoxic conditions. Biochar has a rich pore structure, large specific surface area and special adsorption properties, and has been widely used in different industries. Different raw materials and pyrolysis conditions influence its yield and pore structure.

Methods

In our study, a flow chart was established in Aspen Plus V8.4 software to simulate the pyrolysis process of rice straw and sugarcane bagasse, and the feasibility of the model was verified by experiment. Finally, the Life Cycle Cost (LCC) method was used to evaluate the economics of the process of preparing biochar from 1 t rice straw and sugarcane bagasse.

Results

The simulated value of biochar yield is different from the experimental value. The difference is small at low temperature (300–500 °C), and relatively large at high temperature (600–800 °C), but both remain between 0.55 and 8.93%. Calculations indicate that the costs of rice straw and sugarcane bagasse biochar were 0.79 and 0.93 USD/kg, respectively.

Conclusion

Considering from the aspects of yield, pore structure, energy consumption, and economy of biochar, compared with sugarcane bagasse, rice straw has a more competitive advantage in the preparation of biochar.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhu, Z., Xu, Z.: The rational design of biomass-derived carbon materials towards next-generation energy storage: a review. Renew. Sustain. Energy Rev. 134, 110308 (2020). https://doi.org/10.1016/j.rser.2020.110308

    Article  Google Scholar 

  2. Zhang, Z., Zhu, Z., Shen, B., Liu, L.: Insights into biochar and hydrochar production and applications: a review. Energy 171, 581–598 (2019). https://doi.org/10.1016/j.energy.2019.01.035

    Article  Google Scholar 

  3. Zhu, Z., Rezende, C.A., Simister, R., McQueen-Mason, S.J., Macquarrie, D.J., Polikarpov, I., Gomez, L.D.: Efficient sugar production from sugarcane bagasse by microwave assisted acid and alkali pretreatment. Biomass Bioenergy 93, 269–278 (2016). https://doi.org/10.1016/j.biombioe.2016.06.017

    Article  Google Scholar 

  4. Doula, M.K., Sarris, A., Hliaoutakis, A., Kydonakis, A., Papadopoulos, N.S., Argyriou, L.: Building a strategy for soil protection at local and regional scale-the case of agricultural wastes landspreading. Environ. Monit. Assess. 188, 141 (2016). https://doi.org/10.1007/s10661-016-5139-0

    Article  Google Scholar 

  5. Abnisa, F., Wan Daud, W.M.A.: A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil. Energy Convers. Manage. 87, 71–85 (2014). https://doi.org/10.1016/j.enconman.2014.07.007

    Article  Google Scholar 

  6. Liu, Z., Zhou, X., Chen, X., Dai, C., Zhang, J., Zhang, Y.: Biosorption of clofibric acid and carbamazepine in aqueous solution by agricultural waste rice straw. J. Environ. Sci. 25, 2384–2395 (2013). https://doi.org/10.1016/S1001-0742(12)60324-6

    Article  Google Scholar 

  7. Arregi, A., Amutio, M., Lopez, G., Bilbao, J., Olazar, M.: Evaluation of thermochemical routes for hydrogen production from biomass: a review. Energy Convers. Manage. 165, 696–719 (2018). https://doi.org/10.1016/j.enconman.2018.03.089

    Article  Google Scholar 

  8. Yan, N., Chen, X.: Don’t waste seafood waste. Nature 524, 155–157 (2015). https://doi.org/10.1038/524155a

    Article  Google Scholar 

  9. Lenihan, P., Orozco, A., O’Neill, E., Ahmad, M.N.M., Rooney, D.W., Walker, G.M.: Dilute acid hydrolysis of lignocellulosic biomass. Chem. Eng. J. 156, 395–403 (2016). https://doi.org/10.1016/j.cej.2009.10.061

    Article  Google Scholar 

  10. Deng, L., Zhong, W., Wang, J., Zhang, P., Fang, H., Yao, L., Liu, X., Ren, X., Li, Y.: The enhancement of electrochemical capacitance of biomass-carbon by pyrolysis of extracted nanofibers. Electrochim. Acta 228, 398–406 (2017). https://doi.org/10.1016/j.electacta.2017.01.099

    Article  Google Scholar 

  11. Imtiaz, S., Zhang, J., Zafar, Z.A., Ji, S., Huang, T., Anderson, J.A., Zhang, Z., Huang, Y.: Biomass-derived nanostructured porous carbons for lithium-sulfur batteries. Sci. China Mater. 59, 389–407 (2016). https://doi.org/10.1007/s40843-016-5047-8

    Article  Google Scholar 

  12. Bird, M.I., Wurster, C.M., Silva, P.H.D.P., Bass, A.M., Nys, R.D.: Algal biochar-production and properties. Bioresour. Technol. 102, 1886 (2011). https://doi.org/10.1016/j.biortech.2010.07.106

    Article  Google Scholar 

  13. Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad, J.O., Thies, J., LuizO, F.J., Petersen, J.: Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 70, 1719–1730 (2006). https://doi.org/10.2136/sssaj2005.0383

    Article  Google Scholar 

  14. Lin, X.W., Xie, Z.B., Zheng, J.Y., Liu, Q., Bei, Q.C., Zhu, J.G.: Effects of biochar application on greenhouse gas emissions, carbon sequestration and crop growth in coastal saline soil. Eur. J. Soil Sci. 66, 329–338 (2015). https://doi.org/10.1111/ejss.12225

    Article  Google Scholar 

  15. Li, Y., Hu, H., Song, J., Wu, Y., Chen, Y.: An excellent Fe, N Co-doped porous biomass carbon oxygen reduction reaction electrocatalyst: effect of zinc-based activators on catalytic activity. Energy Technol. 80, 96–104 (2020). https://doi.org/10.1002/ente.202000625

    Article  Google Scholar 

  16. Hou, J., University, T.R.: Study on the acid-reducing effect of biomass carbon on acid soil in new zanthoxylum orchard. Anhui Agric. Sci. Bull. 25, 106–107 (2019). https://doi.org/10.16377/j.cnki.issn1007-7731.2019.11.044

    Article  Google Scholar 

  17. Plaza, M.G., García, S., Rubiera, F., Pis, J.J., Pevida, C.: Evaluation of ammonia modified and conventionally activated biomass based carbons as CO2 adsorbents in postcombustion conditions. Sep. Purif. Technol. 80, 96–104 (2011). https://doi.org/10.1016/j.seppur.2011.04.015

    Article  Google Scholar 

  18. Xu, X., Meng, Z., Zhu, X., Zhang, S., Han, W.Q.: Biomass carbon composited FeS2 as cathode materials for high-rate rechargeable lithium-ion battery. J. Power Sources 380, 12–17 (2018). https://doi.org/10.1016/j.jpowsour.2018.01.057

    Article  Google Scholar 

  19. Zhang, L., Xu, C., Champagne, P.: Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers. Manage. 51, 969–982 (2010). https://doi.org/10.1016/j.enconman.2009.11.038

    Article  Google Scholar 

  20. Gaskin, J.W., Steiner, C., Harris, K., Das, K.C., Bibens, B.: Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans. ASABE 51, 2061–2069 (2008). https://doi.org/10.13031/2013.25409

    Article  Google Scholar 

  21. Singh, B., Singh, B.P., Cowie, A.L.: Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res. 48, 516–525 (2010). https://doi.org/10.1071/SR10058

    Article  Google Scholar 

  22. Choi, H.S., Choi, Y.S., Park, H.C.: Fast pyrolysis characteristics of lignocellulosic biomass with varying reaction conditions. Renew. Energy 42, 131–135 (2012). https://doi.org/10.1016/j.renene.2011.08.049

    Article  Google Scholar 

  23. Cao, J., Xiao, G., Xu, X., Jin, B.S.: Functional groups evolvement and charcoal formation during lignin pyrolysis/carbonization. J. Southeast Univ. (Engl. Ed.) 42, 83–87 (2012). https://doi.org/10.3969/j.issn.1001-0505.2012.01.016

    Article  Google Scholar 

  24. Kazmerski, L.: Renewable and sustainable energy reviews. Renew. Sustain. Energy Rev. 38, 834–847 (2016). https://doi.org/10.1016/j.rser.2014.07.023

    Article  Google Scholar 

  25. Chen, B., Zhou, D., Zhu, L.: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ. Sci. Technol. 42, 5137–5143 (2008). https://doi.org/10.1021/es8002684

    Article  Google Scholar 

  26. Niu, M., Liu, H., Zhang, Y., Zhou, J.: Relationship between the corn straw carbon and the carbonization temperature and time. J. Anhui Agric. Sci. 12, 25–27 (2016). https://doi.org/10.3969/j.issn.0517-6611.2016.12.008

    Article  Google Scholar 

  27. Sun, X.F., Chen, Z.W., Li, Y.X., Ma, H.L., Gao, R., Yin, Y.F.: Influence of different pyrolysis temperatures on eight elements content of biochar. J. Fujian Normal Univ. (Natural Science Edition) 35, 55–61 (2019). https://doi.org/10.12046/j.issn.1000-5277.2019.01.008

    Article  Google Scholar 

  28. Cantrell, K.B., Hunt, P.G., Uchimiya, M., Novak, J.M., Ro, K.S.: Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 107, 419–428 (2012). https://doi.org/10.1016/j.biortech.2011.11.084

    Article  Google Scholar 

  29. Gai, X., Wang, H., Jian, L., Zhai, L., Liu, S., Ren, T., Liu, H., Coles, J.A.: Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS ONE 9, e113888 (2014). https://doi.org/10.1371/journal.pone.0113888

    Article  Google Scholar 

  30. Pan, M.J., Sun, J., Qiang, H.E., Chen, W.Y.: The effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of cotton stalk. J. Hebei Univ. Technol. 43, 60–66 (2014). https://doi.org/10.14081/j.cnki.hgdxb.2014.05.011

    Article  Google Scholar 

  31. Chen, H., Lin, G., Wang, X., Chen, Y., Liu, Y., Yang, H., Shao, J.: Physicochemical properties and hygroscopicity of tobacco stem biochar pyrolyzed at different temperatures. J. Renew. Sustain. Energy 8, 1812 (2016). https://doi.org/10.1063/1.4942784

    Article  Google Scholar 

  32. Saeed, S., Shafeeq, A., Raza, W., Ijaz, A., Saeed, S.: Thermal performance analysis of ionic liquid pretreated spent coffee ground using Aspen Plus. Chem. Eng. Technol. 43, 661 (2020). https://doi.org/10.1002/ceat.202000002

    Article  Google Scholar 

  33. Treeyawetchakul, C.: Preliminary modified biodiesel production by coupling reactive distillation with a steam reformer via Aspen Plus. IOP Conf. Ser. Mater. Sci. Eng. 778, 012064 (2020). https://doi.org/10.1088/1757-899X/778/1/012064

    Article  Google Scholar 

  34. Alnouss, A., Parthasarathy, P., Mackey, H.R., Al-Ansari, T., Mckay, G.: Pyrolysis study of different fruit wastes using an Aspen Plus model. Front. Sustain. Food Syst. 5, 4 (2021). https://doi.org/10.3389/fsufs.2021.604001

    Article  Google Scholar 

  35. Quintero, J.A., Cardona, C.A.: Process simulation of fuel ethanol production from lignocellulosics using Aspen Plus. J. Ind. Eng. Chem. 50, 6205–6212 (2011). https://doi.org/10.1021/ie101767x

    Article  Google Scholar 

  36. Oladokun, O., Nyakuma, B.B., Ivase, T.J.: Gasification of nigerian lignite coals under air-steam conditions using Aspen Plus for the production of hydrogen and syngas. Pet. Coal 63, 332–339 (2021)

    Google Scholar 

  37. María Pilar, G.V., Fernando, R., Covadonga, P., Daniel, T.P., Tarelho, L.A.C.: Thermodynamic analysis of biomass gasification using Aspen Plus: comparison of stoichiometric and non-stoichiometric models. Energies 14, 189 (2021). https://doi.org/10.3390/en14010189

    Article  Google Scholar 

  38. Shi, X.: Study on the application of Aspen Plus in control of flue gas pollution. Energy Convers. Manage. 5, 2–5 (2017). https://doi.org/10.3969/j.issn.2095-0802.2017.05.002

    Article  Google Scholar 

  39. Flagiello, D., Natale, F.D., Erto, A., Lancia, A.: Wet oxidation scrubbing (WOS) for flue-gas desulphurization using sodium chlorite seawater solutions. Fuel 277, 118055 (2020). https://doi.org/10.1016/j.fuel.2020.118055

    Article  Google Scholar 

  40. Yang, Y., Brammer, J.G., Wright, D.G., Scott, J.A., Serrano, C., Bridgwater, A.V.: Combined heat and power from the intermediate pyrolysis of biomass materials: performance, economics and environmental impact. Appl. Energy 191, 639–652 (2017). https://doi.org/10.1016/j.apenergy.2017.02.004

    Article  Google Scholar 

  41. Homagain, K., Shahi, C., Luckai, N., Sharma, M.: Life cycle cost and economic assessment of biochar-based bioenergy production and biochar land application in Northwestern Ontario, Canada. For. Ecosyst. 3, 21 (2017). https://doi.org/10.1186/s40663-016-0081-8

    Article  Google Scholar 

  42. Sahoo, K., Upadhyay, A., Runge, T., Bergman, R., Puettmann, M., Bilek, E.: Life-cycle assessment and techno-economic analysis of biochar produced from forest residues using portable systems. Int. J. Life Cycle Assess. 26, 189–213 (2020). https://doi.org/10.1007/s11367-020-01830-9

    Article  Google Scholar 

  43. Alhashimi, H.A., Aktas, C.B.: Life cycle environmental and economic performance of biochar compared with activated carbon: a meta-analysis. Resour. Conserv. Recycl. 118, 13–26 (2017). https://doi.org/10.1016/j.resconrec.2016.11.016

    Article  Google Scholar 

  44. Harsono, S.S., Grundman, P., Lau, L.H., Hansen, A., Salleh, M.A.M., Meyer-Aurich, A., Idris, A., Ghazi, T.I.M.: Energy balances, greenhouse gas emissions and economics of biochar production from palm oil empty fruit bunches. Resour. Conserv. Recycl. 77, 108–115 (2013). https://doi.org/10.1016/j.resconrec.2013.04.005

    Article  Google Scholar 

  45. Abbie, C., Andrew, B., John, M.D., Simon, S.: From rhetoric to reality: farmer perspectives on the economic potential of biochar in China. Int. J. Agric. Sustain. 12, 440–458 (2014). https://doi.org/10.1080/14735903.2014.927711

    Article  Google Scholar 

  46. Adeniyi, A.G., Ighalo, J.O., Aderibigbe, F.A.: Modelling of integrated processes for the pyrolysis and steam reforming of rice husk (Oryza sativa). SN Appl. Sci. 1, 841 (2019). https://doi.org/10.1007/s42452-019-0877-6

    Article  Google Scholar 

  47. Ward, J., Rasul, M.G., Bhuiya, M.M.K.: Energy recovery from biomass by fast pyrolysis. Proced. Eng. 90, 669–674 (2014). https://doi.org/10.1016/j.proeng.2014.11.791

    Article  Google Scholar 

  48. Adeniyi, A.G., Ighalo, J.O., Amosa, M.K.: Modelling and simulation of banana (Musa spp.) waste pyrolysis for bio-oil production. Biofuels (2019). https://doi.org/10.1080/17597269.2018.1554949

    Article  Google Scholar 

  49. Adeniyi, A.G., Ighalo, J.O., Abdulsalam, A.: Modeling of integrated processes for the recovery of the energetic content of sugar cane bagasse. Biofuels Bioprod. Biorefin. 13, 1–11 (2019). https://doi.org/10.1002/bbb.1998

    Article  Google Scholar 

  50. Adeniyi, A.G., Otoikhian, K.S., Ighalo, J.O.: Steam reforming of biomass pyrolysis oil: a review. Int. J. Chem. React. Eng. (2019). https://doi.org/10.1515/ijcre-2018-0328

    Article  Google Scholar 

  51. Peters, J.F., Iribarren, D., Dufour, J.: Predictive pyrolysis process modelling In Aspen Plus. In: European biomass conference and exhibition, (2014)

  52. Cao, S.H., Hu, W.R., Fan, L.: Progress in the structure of lignin and its analyzing methods. Polym. Bull. 3, 8–13 (2012). https://doi.org/10.14028/j.cnki.1003-3726.2012.03.011

    Article  Google Scholar 

  53. Zhang, Y., Ye, Y.Y., Fan, J., Chang, J.: Selective production of phenol, guaiacol and 2,6-dimethoxyphenol by alkaline hydrothermal conversion of lignin. J. Biobased Mater. Bioenergy 7, 696–701 (2013). https://doi.org/10.1166/jbmb.2013.1397

    Article  Google Scholar 

  54. Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P.: Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48, 3713–3729 (2009). https://doi.org/10.1021/ie801542g

    Article  Google Scholar 

  55. Faravelli, T., Frassoldati, A., Migliavacca, G., Ranzi, E.: Detailed kinetic modeling of the thermal degradation of lignins. Biomass Bioenergy 34, 290–301 (2010). https://doi.org/10.1016/j.biombioe.2009.10.018

    Article  Google Scholar 

  56. Yildiz, G., Ronsse, F., Venderbosch, R., Duren, R.V., Kersten, S., Prins, W.: Effect of biomass ash in catalytic fast pyrolysis of pine wood. Appl. Catal. B 168, 203–211 (2015). https://doi.org/10.1016/j.apcatb.2014.12.044

    Article  Google Scholar 

  57. Shariff, A., Mohamad Aziz, N.S., Abdullah, N.: Slow pyrolysis of oil palm empty fruit bunches for biochar production and characterisation. J. Phys. Ther. Sci. 25, 97–112 (2014)

    Google Scholar 

  58. Kabir, M.J., Chowdhury, A.A., Rasul, M.G.: Pyrolysis of municipal green waste: a modelling, simulation and experimental analysis. Energies 8, 7522–7541 (2015). https://doi.org/10.3390/en8087522

    Article  Google Scholar 

  59. Titiloye, J.O., Abu Bakar, M.S., Odetoye, T.E.: Thermochemical characterisation of agricultural wastes from West Africa. Ind. Crops Prod. 47, 199–203 (2013). https://doi.org/10.1016/j.indcrop.2013.03.011

    Article  Google Scholar 

  60. Gómez, N., Banks, S.W., Nowakowski, D.J., Rosas, J.G., Cara, J., Sánchez, M., Bridgwater, A.V.: Effect of temperature on product performance of a high ash biomass during fast pyrolysis and its bio-oil storage evaluation. Fuel Process. Technol. 172, 97–105 (2017). https://doi.org/10.1016/j.fuproc.2017.11.021

    Article  Google Scholar 

  61. Zhu, Z., Liu, Y., Gomez, L.D., Wei, T., Macquarrie, D.J.: Thermochemical pretreatments of maize stem for sugar recovery: comparative evaluation of microwave and conventional heating. Ind. Crops Prod. (2020). https://doi.org/10.1016/j.indcrop.2020.113106

    Article  Google Scholar 

  62. Nooshin, R., Hooi Ling, F., Nor Aini Abdul, R., Arbakariya, A., Umi Kalsom, M.: Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production. BMC Biotechnol. (2014). https://doi.org/10.1186/s12896-014-0103-y

    Article  Google Scholar 

  63. Zhang, Q.Z., Gai, W.M.: Enzymatic hydrolysis of alkali-pretreated rice straw by Trichoderma reesei ZM4-F3. Biomass Bioenergy 32, 1130–1135 (2008). https://doi.org/10.1016/j.biombioe.2008.02.006

    Article  Google Scholar 

  64. Remli, N.M., Shah, U.M., Mohamad, R., Abd-Aziz, S.: Effects of chemical and thermal pretreatments on the enzymatic saccharification of rice straw for sugars production. BioResources 9, 510–522 (2014). https://doi.org/10.15376/biores.9.1.510-522

    Article  Google Scholar 

  65. Xing, X., Sun, Z., Ma, P., Yu, J., Wu, Z.: Establishment of three components of biomass pyrolysis yield model. Energy Proced. 66, 293–296 (2015). https://doi.org/10.1016/j.egypro.2015.02.061

    Article  Google Scholar 

  66. Liu, N., Huang, X.: Simulation and calculation for coal drying process by Aspen Plus. Coal Convers. 36, 65–67 (2013). https://doi.org/10.19726/j.cnki.ebcc.2013.01.015

    Article  Google Scholar 

  67. Begum, S., Rasul, M., Akbar, D., Ramzan, N.: Performance analysis of an integrated fixed bed gasifier model for different biomass feedstocks. Energies 6, 6508–6524 (2013). https://doi.org/10.3390/en6126508

    Article  Google Scholar 

  68. Tauqir, W., Zubair, M., Nazir, H.: Parametric analysis of a steady state equilibrium-based biomass gasification model for syngas and biochar production and heat generation. Energy Convers. Manage. 199, 111954 (2019). https://doi.org/10.1016/j.enconman.2019.111954

    Article  Google Scholar 

  69. Burlington, M.: Getting started modeling processes with solids. Aspen Technol. (2010). http://profsite.um.ac.ir/~fanaei/_private/Solids%208_4.pdf. Accessed 3 Jan 2022

  70. Yang, Y., Yan, H., Chen, R., Lee, H., Zheng, C.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788 (2007). https://doi.org/10.1016/j.fuel.2006.12.013

    Article  Google Scholar 

  71. Smets, K., Roukaerts, A., Czech, J., Reggers, G., Schreurs, S., Carleer, R., Yperman, J.: Slow catalytic pyrolysis of rapeseed cake: product yield and characterization of the pyrolysis liquid. Biomass Bioenergy 57, 180–190 (2013). https://doi.org/10.1016/j.biombioe.2013.07.001

    Article  Google Scholar 

  72. Zhao, B., O’Connor, D., Zhang, J., Peng, T., Zheng, T.: Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J. Clean. Prod. 174, 977–987 (2018). https://doi.org/10.1016/j.jclepro.2017.11.013

    Article  Google Scholar 

  73. Uchimiya, M., Wartelle, L.H., Klasson, K.T., Fortier, C.A., Lima, I.M.: Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J. Agric. Food Chem. 59, 2501–2510 (2011). https://doi.org/10.1021/jf104206c

    Article  Google Scholar 

  74. Wang, Y., Zhou, E., Wu, M.: Simulation analysis of natural gas auto thermal reforming to syngas by Aspen Plus. Coal Chem. Ind. 47(8–12), 22 (2019)

    Google Scholar 

  75. Sansaniwal, S.K., Pal, K., Rosen, M.A., Tyagi, S.K.: Recent advances in the development of biomass gasification technology: a comprehensive review. Renew. Sust. Energy Rev. 72, 363–384 (2017). https://doi.org/10.1016/j.rser.2017.01.038

    Article  Google Scholar 

  76. Demirbas, A., Arin, G.N.: An overview of biomass pyrolysis. Energy Source 24, 475–482 (2002). https://doi.org/10.1016/s0140-6701(03)83069-2

    Article  Google Scholar 

  77. Wu, S., Wang, X., Chen, C., Peng, B., Zhuang, Y.: Characterization of biochar derived from water hyacinth, rice straw and sewage sludge and their environmental implications. Acta entiae Circumstantiae 35, 4021–4032 (2015). https://doi.org/10.13671/j.hjkxxb.2015.0119

    Article  Google Scholar 

  78. Chandra, S., Bhattacharya, J.: Influence of temperature and duration of pyrolysis on the property heterogeneity of rice straw biochar and optimization of pyrolysis conditions for its application in soils. J. Clean. Prod. 215, 1123–1139 (2019). https://doi.org/10.1016/j.jclepro.2019.01.079

    Article  Google Scholar 

  79. Kameyama, K., Miyamoto, T., Iwata, Y., Shiono, T.: Effects of biochar produced from sugarcane bagasse at different pyrolysis temperatures on water retention of a calcaric dark red soil. Soil Sci. 181, 20–28 (2016). https://doi.org/10.1097/SS.0000000000000123

    Article  Google Scholar 

  80. Moradi-Choghamarani, F., Moosavi, A.A., Sepaskhah, A.R., Baghernejad, M.: Physico-hydraulic properties of sugarcane bagasse-derived biochar: the role of pyrolysis temperature. Cellulose 26, 7125–7143 (2019)

    Article  Google Scholar 

  81. Lin, X.Q., Lu, H.H., Liu, Y.X., Wang, Y.Y., Yang, S.M.: Effects of biomass and carbonization temperature on biochar yield and characteristics. Acta Agric. Univ. Zhejiang 39, 710–714 (2016). https://doi.org/10.3969/j.issn.1004-1524.2016.07.18

    Article  Google Scholar 

  82. Altafini, C.R., Wander, P.R., Barreto, R.M.: Prediction of the working parameters of a wood waste gasifier through an equilibrium model. Energy Convers. Manage. 44, 2763–2777 (2003). https://doi.org/10.1016/s0196-8904(03)00025-6

    Article  Google Scholar 

  83. Zheng, Z.W., Chen, B.G., Liu, G.F., Zhao, J.: Analysis of XRD spectral structure and carbonization of the biochar preparation. Spectrosc. Spectr. Anal. 36, 3355–3359 (2016). https://doi.org/10.3964/j.issn.1000-0593(2016)10-3355-05

    Article  Google Scholar 

  84. Liao, C., Wu, C., Yan, Y., Huang, H.: Chemical elemental characteristics of biomass fuels in China. Biomass Bioenergy 27, 119–130 (2004). https://doi.org/10.1016/j.biombioe.2004.01.002

    Article  Google Scholar 

  85. Saddawi, A., Jones, J.M., Williams, A.: Influence of alkali metals on the kinetics of the thermal decomposition of biomass. Fuel Process. Technol. 104, 189–197 (2012). https://doi.org/10.1016/j.fuproc.2012.05.014

    Article  Google Scholar 

  86. Wei, J., Guo, Q., Ding, L., Gong, Y., Yu, J., Yu, G.: Understanding the effect of different biomass ash additions on pyrolysis product distribution, char physicochemical characteristics, and char gasification reactivity of bituminous coal. Energy Fuels 33, 3068–3076 (2019). https://doi.org/10.1021/acs.energyfuels.9b00064

    Article  Google Scholar 

  87. Zhu, Z., Liu, Y., Cong, W., Zhao, X., Fang, Z.: Soybean biodiesel production using synergistic CaO/Ag nano catalyst: process optimization, kinetic study, and economic evaluation. Ind. Crops Prod. 166, 113479 (2021). https://doi.org/10.1016/j.indcrop.2021.113479

    Article  Google Scholar 

  88. Roschat, W., Siritanon, T., Yoosuk, B., Promarak, V.: Biodiesel production from palm oil using hydrated lime-derived CaO as a low-cost basic heterogeneous catalyst. Energy Convers. Manage. 108, 459–467 (2016). https://doi.org/10.1016/j.enconman.2015.11.036

    Article  Google Scholar 

  89. Ahmad, M., Usman, A.R., Rafique, M.I., Al-Wabel, M.I.: Engineered biochar composites with zeolite, silica, and nano-zerovalent iron for the efficient scavenging of chlortetracycline from aqueous solutions. Environ. Sci. Pollut. Res. 26, 15136–15152 (2019). https://doi.org/10.1007/s11356-019-04850-7

    Article  Google Scholar 

  90. Fan, X., Guo, X., Wang, X., Wang, H., Jiang, Z., Xing, Y.: Study on the modification of nutshell biochar and Its sorption mechanism for DEP. J. Soil Water Conserv. 35(336–345), 353 (2021). https://doi.org/10.13870/j.cnki.stbcxb.2021.05.045

    Article  Google Scholar 

  91. Lu, L., Wang, J., Chen, B.: Adsorption and desorption of phthalic acid esters on graphene oxide and reduced graphene oxide as affected by humic acid. Environ. Pollut. 232, 505–513 (2018). https://doi.org/10.1016/j.envpol.2017.09.078

    Article  Google Scholar 

  92. Liu, Y., Yang, X., Adamu, A., Zhu, Z.: Economic evaluation and production process simulation of biodiesel production from waste cooking oil. Curr. Res. Green Sustain. Chem. 4, 100091 (2021). https://doi.org/10.1016/j.crgsc.2021.100091

    Article  Google Scholar 

  93. Sesana, M.M., Salvalai, G.: Overview on life cycle methodologies and economic feasibility for nZEBs. Build Environ. 67, 211–216 (2013). https://doi.org/10.1016/j.buildenv.2013.05.022

    Article  Google Scholar 

  94. Li, L., Ma, X., Xie, M., Liao, Y.: Full life cycle assessment on wind power generation system. Chinese J. Turbomach. 57, 65–70 (2015). https://doi.org/10.16492/j.fjjs.2015.02.067

  95. Wang, X.: Analysis on environmental benefit of wind turbines using life cycle assessment-case study of some wind farm in inner mongolia. Sci. Technol. Manage. Res. 32, 259–262 (2012). https://doi.org/10.3969/j.issn.1000-7695.2012.18.057

    Article  Google Scholar 

  96. Zou, Z., Ma, X., Zhao, Z., Li, H., Chen, Y.: Life cycle assessment on the hydropower project. Water Power 30, 53–55 (2004). https://doi.org/10.3969/j.issn.0559-9342.2004.04.016

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial supports from Jiangsu University of Science and Technology (1142931706) and Natural Science Foundation of the Higher Education Institution of Jiangsu Province (20KJB480009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongyuan Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yang, X., Zhang, J. et al. Process Simulation of Preparing Biochar by Biomass Pyrolysis Via Aspen Plus and Its Economic Evaluation. Waste Biomass Valor 13, 2609–2622 (2022). https://doi.org/10.1007/s12649-021-01671-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01671-z

Keywords

Navigation