Skip to main content
Log in

Valorization potential of Plantago major L. solid waste remaining after industrial tincture production: Insight into the chemical composition and bioactive properties

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Herbal residues from the production and processing of medicinal plants are usually discarded as waste material. Plantago major is an edible plant, traditionally used for medicinal purposes, having wide application in the pharmaceutical and cosmetics industry, usually in the form of liquid extracts and tinctures. In this work, extracts of P. major leaves waste remaining after industrial tincture production and dried leaves used initially for tincture production were investigated and compared.

Methods

The chemical composition was obtained by FTIR analysis, whereas polyphenolic profile was assessed by HPLC. Antioxidant activity, sun protection factor (SPF), cytotoxic activity against colon carcinoma (HCT116) and melanoma (Hs294T) human cell lines as well as antistaphylococcal activity against S. aureus ATCC strains and one clinical isolate were also evaluated.

Results

FTIR analysis revealed wider chemical diversity in waste samples than in initial plant material. Among detected phenolics, chlorogenic acid, luteolin, and rutin were the most abundant in all extracts, whereas luteolin was even higher in the waste. Waste extracts had a significantly lower sun protection factor (SPF) when compared to initial dried leaves. On the contrary, cytotoxic activity of waste extracts against tested human cell lines were more efficient when compared to initial dried leaves, which can be attributed to the higher luteolin content in tincture residues. Both waste and initial dried leaves extracts exhibited antibacterial activity against all tested S. aureus strains at higher tested concentrations.

Conclusion

P. major waste remaining after industrial tincture production represents high-value material with great valorization potential.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. World Health Report. The world health report 2002—Reducing Risks, Promoting Healthy Life, Geneva (2002) https://www.who.int/whr/2002/en/whr02_en.pdf?ua=1

  2. Schmelzer, G.H., Gurib-Fakim, A.: Plant Resource of Tropical Africa 11 (1) Medicinal Plants 1. PROTA Foundation, Wageningen, Netherlands/ Backhuys Publishers, Leiden, Netherlands/CTA, Wageningen, Netherlands, 791 (2008)

  3. Adom, M.B., Tahera, M., Mutalabisina, M.F., Amria, M.S., Kudosa, M.B.A., Azizi Wan Sulaiman, M.W., Deny Susanti, P.S.: Chemical constituents and medical benefits of Plantago major. Biomed. Pharmacother. 96, 348–360 (2017)

    Google Scholar 

  4. De Souza, C.D., Barreto, R.W., Soares, D.J.: First report of downy mildew on Plantago major caused by Peronospora alta in Brazil. Australas. Plant Dis. Notes 3, 78–80 (2008)

    Google Scholar 

  5. Zubair, M., Ekholm, A., Nybom, H., Renvert, S., Widen, C., Rumpunen, K.: Effects of Plantago major L. leaf extracts on oral epithelial cells in a scratch assay. J. Ethnopharmacol. 141(3), 825–30 (2012)

    Google Scholar 

  6. Najafian, Y., Hamedi, S.S., Farshchi, M.K., Feyzabadi, Z.: Plantago major in traditional Persian medicine and modern phytotherapy: a narrative review. Electron. Physician. 10(2), 6390–6399 (2018)

    Google Scholar 

  7. Matejić, J.S., Stefanović, N., Ivković, M., Živanović, N., Marin, P.D., Džamić, A.M.: Traditional uses of autochthonous medicinal and ritual plants and other remedies for health in Eastern and South-Eastern Serbia. J. Ethnopharmacol. 261, 113186 (2020)

    Google Scholar 

  8. Galvez, M., Martın-Cordero, C., Lopez-Lazaro, M., Cortes, F., Ayuso, M.J.: Cytotoxic effect of Plantago spp. on cancer cell lines. J. Ethnopharmacol. 88(2), 125–130 (2003)

    Google Scholar 

  9. Velasco-Lezama, R., Tapia-Aguilar, R., Román-Ramos, R., Vega-Avila, E., Pérez-Gutiérrez, M.S.: Effect of Plantago major on cell proliferation in vitro. J. Ethnopharmacol. 103(1), 36–42 (2006)

    Google Scholar 

  10. Weryszko-Chmielewska, E., Matysik-Wozniak, A., Sulborska, A., Rejdak, R.: Commercially important properties of plants of the genus Plantago. Acta Agrobot. 65(1), 11–20 (2012)

    Google Scholar 

  11. Mohammadsadeghi, S., Habibi, H., Keshavarzi, A., Malekpour, A.: Antimicrobial effect of some herbal medicine against infectious bacteria isolated from burn wound. Trends Pharm. Sci. 4(4), 219–224 (2018)

    Google Scholar 

  12. Stanisavljević, I.T., Stojičević, S.S., Veličković, D.T., Lazić, M.L., Veljković, V.B.: Screening the antioxidant and antimicrobial properties of the extracts from plantain (Plantago major L.) leaves. Sep. Sci. Technol. 43(14), 3652–3662 (2008)

    Google Scholar 

  13. Beara, I.N., Lesjak, M., Jovin, E.D., Balog, K.J., Anackov, G.T., Orcić, D.Z., Mimica-Dukić, N.M.: Plantain (Plantago L.) species as novel sources of flavonoid antioxidants. J. Agric. Food Chem. 57(19), 9268–9273 (2009)

    Google Scholar 

  14. Samuelsen, A.B.: The traditional uses, chemical constituents and biological activities of Plantago major L. A review. J. Ethnopharmacol. 71(1–2), 1–21 (2000)

    Google Scholar 

  15. Kobeasy, M., Abdel-Fatah, O.M., AbdEl-Salam, S.M., Mohamed, Z.E.-O.M.: Biochemical studies on Plantago major L. and Cyamopsis tetragonoloba L. Int. J. Biodivers. Conserv. 3(3), 83–91 (2010)

    Google Scholar 

  16. Sugihartini, N.: Curcumin and extract of Plantago major L. increased SPF value of cold cream base. Indonesian J. Cancer Chemoprev. 1(1), 43–47 (2010)

    Google Scholar 

  17. Council of Europe. European pharmacopoeia, 3rd edn. Counci lof Europe, Strasbourg (1999)

  18. Filipović, V., Ugrenović, V.: The composting of plant residues originating from the production of medicinal plants. Proceedings of the Sustainable agriculture and rural development in terms of the Republic of Serbia strategic goals realization within the Danube region-Achieving regional competitiveness, 1283–1301, (2013)

  19. Navarrete, A., Herrero, M., Martín, A., Cocero, M.J., Ibáñez, E.: Valorization of solid wastes from essential oil industry. J. Food Eng. 104, 196–201 (2011)

    Google Scholar 

  20. Moisa, C., Copolovici, L., Bungau, S., Pop, G., Imbrea, I., Lupitu, A., Nemeth, S., Copolovici, D.: Wastes resulting from aromatic plants distillation—bio-sources of antioxidants and phenolic compounds with biological active principles. Farmacia 66(1), 289–295 (2018)

    Google Scholar 

  21. Veličković, D.T., Milenović, D.M., Ristić, M.S., Veljković, V.B.: Ultrasonic extraction of waste solid residues from the Salvia sp. essential oil hydrodistillation. Biochem. Eng. J. 42(1), 97–104 (2008)

    Google Scholar 

  22. Pantelić, M., Dabić Zagorac, D., Ćirić, I., Pergal, M., Relić, D., Todić, S., Natić, M.: Phenolic profiles, antioxidant activity and minerals in leaves of different grapevine varieties grown in Serbia. J. Food Compos. Anal. 62, 76–83 (2017)

    Google Scholar 

  23. Singleton, V.L., Orthofer, R., Lamuela-Ravetós, R.M.: [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In: Packer, L. (ed.) Methods in Enzymology, pp. 152–178. Academic Press, Cambridge, MA (1999)

    Google Scholar 

  24. Blois, M.S.: Antioxidant determinations by the use of a stable free radical. Nature 181(4617), 1199–1200 (1985)

    Google Scholar 

  25. Benzie, I.F.F., Strain, J.J.: The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 239(1), 70–76 (1966)

    Google Scholar 

  26. Mansur, J.S., Breder, M.N.R., Mansur, M.D.A., Azulay, R.D.: Correlação entre a determinação do fator de proteção solar em seres humanos e por espectrofotometria. An. Bras. Dermatol. 61(2), 167–172 (1986)

    Google Scholar 

  27. Sayre, R.M., Agin, P.P., Le Vee, G.J., Marlowe, E.: A comparison of in vivo and in vitro testing of sunscreening formulas. Photochem. Photobiol. 29(3), 559–566 (1979)

    Google Scholar 

  28. Vasiljević, B., Knežević-Vukčević, J., Mitić-Ćulafić, D., Orčić, D., Francišković, M., Srdic-Rajic, T., Jovanović, M., Nikolić, B.: Chemical characterization, antioxidant, genotoxic and in vitro cytotoxic activity assessment of Juniperus communis var. saxatilis. Food Chem. Toxicol. 112, 118–125 (2018)

    Google Scholar 

  29. Đukanović, S., Cvetković, S., Lončarević, B., Lješević, M., Nikolić, B., Simin, N., Bekvalac, K., Kekić, D., Mitić-Ćulafić, D.: Antistaphylococcal and biofilm inhibitory activities of Frangula alnus bark ethyl-acetate extract. Ind. Crops Prod. 158, 113013 (2020)

    Google Scholar 

  30. Hammer, Ø., Harperm, D.A.T., Ryan, P.D.: PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4(1), 9 (2001)

    Google Scholar 

  31. Menges, F. 2018. Spectragryph—optical spectroscopy software, Version 1.2.8, 2018, http://www.effemm2.de/spectragryph/.

  32. Brangule, A., Šukele, R., Bandere, D.: Herbal medicine characterization perspectives using advanced FTIR sample techniques—diffuse reflectance (DRIFT) and photoacoustic spectroscopy (PAS). Front. Plant Sci. 11, 356 (2020)

    Google Scholar 

  33. Schulz, H., Baranska, M.: Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 43, 13–25 (2007)

    Google Scholar 

  34. Amakura, Y., Yoshimura, A., Yoshimura, M., Yoshida, T.: Isolation and characterization of phenolic antioxidants from Plantago Herb. Molecules 17, 5459–5466 (2012)

    Google Scholar 

  35. Makhmudov, R.R., Abdulladzhanova, N.G., Kamaev, F.G.: Phenolic compounds from Plantago major and P. lanceolate. Chem. Nat. Compd. 47, 288 (2011)

    Google Scholar 

  36. Ganeshpurkar, A., Salujam, A.: The pharmacological potential of rutin. Saudi Pharm. J. 25(2), 149–164 (2017)

    Google Scholar 

  37. Lin, Y., Shi, R., Wang, X., Shen, H.M.: Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr. Cancer Drug Targets 8(7), 634–646 (2008)

    Google Scholar 

  38. Tajik, N., Tajik, M., Mack, I., Enck, P.: The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. Eur. J. Nutr. 56, 2215–2244 (2017)

    Google Scholar 

  39. Turkmen, N., Sari, F., Velioglu, Y.S.: Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods. Food Chem. 99(4), 835–841 (2006)

    Google Scholar 

  40. Gunathilake, K.D.P.P., Ranaweera, K.K.D.S., Rupasinghe, H.P.V.: Response surface optimization for recovery of polyphenols and carotenoids from leaves of Centella asiatica using an ethanol-based solvent system. Food Sci. Nutr. 7(2), 528–536 (2019)

    Google Scholar 

  41. Miao, M., Xiang, L.: Pharmacological action and potential targets of chlorogenic acid. Adv. Pharmacol. 87, 71–88 (2020)

    Google Scholar 

  42. Kumar, S., Pandey, A.K.: Chemistry and biological activities of flavonoids: an overview. Sci. World J. 2013, 162750 (2013)

    Google Scholar 

  43. Ozsoy, N., Can, A., Yanardag, R., Akev, N.: Antioxidant activity of Smilax excelsa L. leaf extracts. Food Chem. 110(3), 571–583 (2008)

    Google Scholar 

  44. Kuhlmann, F., Müller, C.: Impacts of ultraviolet radiation on interactions between plants and herbivorous insects: a chemo-ecological perspective. In: Lüttge, U., Beyschlag, W., Büdel, B., Francis, D. (eds.) Progress in Botany (Genetics—Physiology—Systematics—Ecology), vol. 72, pp. 305–347. Springer, Berlin (2010)

    Google Scholar 

  45. Vicaș, L., Teușdea, A., Vicaș, S., Marian, E., Jurca, T., Mureșan, M., Gligor, F.: Assessment of antioxidant capacity of some extracts for further use in therapy. Farmacia 63(2), 267–274 (2015)

    Google Scholar 

  46. Serive, B., Nicolau, E., Bérard, J.B., Kaas, R., Pasquet, V., Picot, L., Cadoret, J.P.: Community analysis of pigment patterns from 37 microalgae strains reveals new carotenoids and porphyrins characteristic of distinct strains and taxonomic groups. PLoS ONE 12(2), e0171872 (2017)

    Google Scholar 

  47. Kovacic, P., Somanathana, R.: Toxicity of imine–iminium dyes and pigments: electron transfer, radicals, oxidative stress and other physiological effects. J. Appl. Toxicol. 34, 825–834 (2014)

    Google Scholar 

  48. Ray, A., Gupta, S.D., Ghosh, S.: Evaluation of anti-oxidative activity and UV absorption potential of the extracts of Aloe vera L. gel from different growth periods of plants. Ind. Crops Prod. 49, 712–719 (2013)

    Google Scholar 

  49. Ray, A., Dutta Gupta, S., Ghosh, S.: Isolation and characterization of potent bioactive fraction with antioxidant and UV absorbing activity from Aloe barbadensis Miller gel. J. Plant Biochem. Biotechnol. 22(4), 483–487 (2013)

    Google Scholar 

  50. Morocho-Jácome, A.L., Freire, T.B., de Oliveira, A.C., de Almeida, T.S., Rosado, C., Velasco, M.V.R., Baby, A.R.: In vivo SPF from multifunctional sunscreen systems developed with natural compounds—a review. J. Cosmet. Dermatol. 20(3), 729–737 (2020)

    Google Scholar 

  51. Catelan, T.B.S., Gaiola, L., Duarte, B.F., Cardoso, C.A.L.: Evaluation of the in vitro photoprotective potential of ethanolic extracts of four species of the genus Campomanesia. J. Photochem. Photobiol. A 197, 111500 (2019)

    Google Scholar 

  52. Velasco, M.V.R., Sarruf, F.D., Salgado-Santos, I.M.N., Haroutiounian-Filho, C.A., Kaneko, T.M., Baby, A.R.: Broad spectrum bioactive sunscreens. Int. J. Pharm. 3 363(1–2), 50–57 (2008)

    Google Scholar 

  53. Hou, N., Liu, N., Han, J., Yan, Y., Li, J.: Chlorogenic acid induces reactive oxygen species generation and inhibits the viability of human colon cancer cells. Anticancer Drugs 28(1), 59–65 (2017)

    Google Scholar 

  54. Yoo, H.S., Won, S.B., Kwon, Y.H.: Luteolin induces apoptosis and autophagy in HCT116 colon cancer cells via p53-dependent pathway. Nutr. Cancer (2021). https://doi.org/10.1080/01635581.2021.1903947

    Article  Google Scholar 

  55. Karima, S., Farida, S., Mihoub, Z.M.: Antioxidant and antimicrobial activities of Plantago major. Int. J. Pharm. Pharm. Sci. 7(5), 58–64 (2015)

    Google Scholar 

  56. Behbahani, B.A., Shahidi, F., Yazdi, F.T., Mortazavi, S.A., Mohebbi, M.: Use of Plantago major seed mucilage as a novel edible coating incorporated with Anethum graveolens essential oil on shelf life extension of beef in refrigerated storage. Int. J. Biol. Macromol. 94, 515–526 (2017)

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge financial support Ministry of Education and Science, Republic of Serbia (Grant Nos. 200051 and 200168). Authors wish to express gratitute to "Bilje Borča" for providing plant material used in this study as samples.

Funding

This work was supported by the Ministry of Education, Science and Technological Development, Republic of Serbia (Grant Nos. 200051 and 200168).

Author information

Authors and Affiliations

Authors

Contributions

All authors have given the equal contribution to the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marija Petrović.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrović, M., Jovanović, M., Lević, S. et al. Valorization potential of Plantago major L. solid waste remaining after industrial tincture production: Insight into the chemical composition and bioactive properties. Waste Biomass Valor 13, 1639–1651 (2022). https://doi.org/10.1007/s12649-021-01608-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01608-6

Keywords

Navigation