Skip to main content
Log in

Formulation of New Biostimulant of Plant and Soil Correction Based on Humic Acids Extracted by Magnetized Water from Compost from the Waste of Coffee Marc and Cattle Manure

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Humic acids and fulvic acids are the essential components of the organic matter found in the compost. They are found in the form of a complex biopolymer resulting from the decomposition of organic matter. They have several advantages on the ecosystem, flora and fauna. They are considered to be bio stimulating molecules. They have a positive influence on pedology, germination and plant growth. The main goal of this study is to determine the best conditions for extracting a greater amount of organic matter (OM), humic acids (HA) and fulvic acids (FA) from the compost formulated from cattle manure and marc of coffee with a new method.

Method

In this article we compared various results of the extraction of organic matter, humic acids and fulvic acids by magnetized water and tap water for different concentrations of KOH different extraction times.

Results

The best result obtained with a KOH extraction (0.5 N) for 2 h with water magnetized at room temperature on a laboratory and pilot scale. Organic matter, humic and fulvic acids were measured by the ANNE method.

Conclusions

The results show that compost is a source of humic substances, which can be considered as an alternative biostimulant to chemical fertilizers to preserve the environment.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be available on request.

References

  1. Zhang, X., Schmidt, R.E.: Hormone-containing products impact onantioxidant status of tall fescue and creeping bentgrass subjected to drought. Crop Sci. 40, 1344–1349 (2000)

    Article  Google Scholar 

  2. Calvo, P., Nelson, L., Kloepper, J.W.: Agricultural uses of plant biostimulants. Plant Soil 383, 3–41 (2014)

    Article  Google Scholar 

  3. du Jardin, P.: The science of plant biostimulants—a bibliographic analysis. Adhoc study report to the European Commission DG ENTR. (2012). http://ec.europa.eu/enterprise/sectors/chemicals/files/fertilizers/finalreportbio2012en.pdf.

  4. Halpern, M., Bar-Tal, A., Ofek, M., Minz, D., Muller, T., Yermiyahu, U.: The useof biostimulants for enhancing nutrient uptake. Adv. Agron. 129, 141–174 (2015)

    Article  Google Scholar 

  5. Jindo, K., Martim, S.A., Navarro, E.C., Aguiar, N.O., Canellas, L.P.: Root growthpromotion by humic acids from composted and non-composted urban organicwastes. Plant Soil 353, 209–220 (2012)

    Article  Google Scholar 

  6. Olivares, F.L., Aguiar, N.O., Rosa, R.C.C., Canellas, L.P.: Substratebiofortification in combination with foliar sprays of plant growth promotingbacteria and humic substances boosts production of organic tomatoes. Sci. Hortic. 183, 100–108 (2015)

    Article  Google Scholar 

  7. Schiavon, M., Pizzeghello, D., Muscolo, A., Vaccaro, S., Francioso, O., Nardi, S.: High molecular size humic substances enhance phenylpropanoid metabolismin maize (Zea mays L.). J. Chem. Ecol. 36, 662–669 (2010)

    Article  Google Scholar 

  8. Bottomley, W.B.: Some effects of organic-promotion substances (auximones) on the growth of Lema minor in mineral cultur solutions. Proc. R. Soc. Lond. B 89, 481–505 (1917)

    Article  Google Scholar 

  9. O’Donnell, R.W.: The auxin-like effects of humic preparations from leonardite. Soil Sci. 116(2), 106–112 (1972)

    Article  Google Scholar 

  10. Muscolo, A., Panuccio, M.R., Nardi, S.: Effect of two different humic substances on seed germination of Pinus iaricio. Seed Sci. Technol. 27(2), 799–803 (1999b)

    Google Scholar 

  11. Pizzeghello, D., Nicolini, G., Nardi, S.: Hormone-like activity of humic substances in Fagus sylvaticae forests. New Physiol. 151(3), 647–657 (2001)

    Article  Google Scholar 

  12. Nardi, S., Panuccio, M.R., Abenavoli, M.R., Muscolo, A.: Auxin-like effect of humic substances extracted from faeces of Allolobophora Calignosa and A. Rosea. Soil Biol. Biochem. 26(10), 1341–1346 (1994)

    Article  Google Scholar 

  13. Lebuhn, M., Hartmann, A.: Method for determination of indole-3-acetic acid and related compounds of L-tryptophan catabolism in soils. J. Chromatogr. B 629, 255–266 (1993)

    Article  Google Scholar 

  14. Frankenberger, W.T., Arshad, M.: Phytohormones in soils. Marcel Dekker, New York (2020)

    Book  Google Scholar 

  15. Nardi, S., Arnoldi, G., Dell’Agnola, G.: Release of the hormone-like activities from Allolobophora rosea (Sav.) and Allolobophora caliginosa (Sav.) feces. Can. J. Soil Sci. 68, 563–567 (1995)

    Article  Google Scholar 

  16. Mato, M.C., Olmedo, M.G., Mendez, J.: Inhibition of indoleacetic acid-oxidase by soil humic acids fractionated on sephadex. Soil Biol. Biochem. 4(4), 469–473 (1972b)

    Article  Google Scholar 

  17. Yakhin, O.I., Lubyanov, A.A., Yakhin, I.A., Brown, P.H.: Biostimulants in plant science: a global perspective. Front. Plant Sci. 7, 2049 (2017). https://doi.org/10.3389/fpls.2016.02049

    Article  Google Scholar 

  18. Faessel, L., Gomy, C., Nassr, N., Tostivint, C., Hipper, C., Dechanteloup, A.: Stimulation products in agriculture aimed at improving the biological functions of soils and plants. Study of available knowledge and strategic recommendations, study report to the Ministry of Agriculture, Agri-Food and Forestry, Bio by Deloitte and RITTMO Agroenvironnement, p. 148 (2014).

  19. Mylonas, V.A., McCants, C.B.: Effects of humic and fulvic acids on growth of Tobacco. Plant Soil 54, 485–490 (1980)

    Article  Google Scholar 

  20. Hartwigsen, J.A., Evans, M.R.: Humic acids seed and substrate treatments promote seedling root development. HortScience 35(7), 1231–1233 (2000)

    Article  Google Scholar 

  21. Chen, Y., Aviad, T.: Effects of humic substance on plant growth. In: Malcolm, R.L. (ed.) Humic substances in soil and crop sciences: selected readings, pp. 161–186. Soil Science Society of America, Madison (1990)

    Google Scholar 

  22. Rauthan, B.S., Schnitzer, M.: Effects of a soil fulvic acid on the growth and nut content of cucumber (Cucumis sativus) plants. Plant Soil 63, 491–495 (1981)

    Article  Google Scholar 

  23. Cooper, R.J., Liu, C., Fischer, D.S.: Influence of humic substances on rooting and nutrient content of creeping bentgrass. Crop Sci. 38(6), 1639–1644 (1998)

    Article  Google Scholar 

  24. Mayr, E.: The growth of biological thought: diversity, evolution, and inheritance. Harvard University Press, Cambridge (1982)

    Google Scholar 

  25. Luisi, P.L.: Emergence in chemistry: chemistry as the embodiment of emergence. Found. Chem. 4, 183–200 (2002). https://doi.org/10.1023/A:1020672005348

    Article  Google Scholar 

  26. Johnson, C.W.: What are emergent properties and how do they affect the engineering of complex systems? Reliab. Eng. Syst. Saf. 91, 1475–1481 (2006). https://doi.org/10.1016/j.ress.2006.01.008

    Article  Google Scholar 

  27. Korosov, A.V.: Anemergentprincipleinecology. Princ. Èkol 1, 48–66 (2012). https://doi.org/10.15393/j1.art.2012.1481

    Article  Google Scholar 

  28. Lüttge, U.: Modularity and emergence:biology’schallengein understandinglife. Plant Biol. 14, 865–871 (2012). https://doi.org/10.1111/j.1438-8677.2012.00659.x

    Article  Google Scholar 

  29. Bertolli, S.C., Mazzafera, P., Souza, G.M.: Why is it so difficult to identify a single indicator of water stress in plants a proposal for a multivariate analysis to as emergent properties. Plant Biol. 16, 578–585 (2014). https://doi.org/10.1111/plb.12088

    Article  Google Scholar 

  30. Van Regenmortel, M.H.: Reduction is mand complexity in molecular biology. EMBO Rep. 5, 1016–1020 (2004). https://doi.org/10.1038/sj.embor.7400284

    Article  Google Scholar 

  31. Bhalla, U.S., Iyengar, R.: Emergent properties of networks of biological signal in gpath ways. Science 283, 381–387 (1999). https://doi.org/10.1126/science.283.5400.381

    Article  Google Scholar 

  32. Wintermute, E.H., Silver, P.A.: Emergent cooperation in microbial metabolism. Mol. Syst. Biol 6, 407 (2010). https://doi.org/10.1038/msb.2010.66

    Article  Google Scholar 

  33. Chiu, H.C., Levy, R., Borenstein, E.: Emergent biosynthetic capacity in simple microbial communities. PLoS Comput. Biol. 10, e1003695 (2014). https://doi.org/10.1371/journal.pcbi.1003695

    Article  Google Scholar 

  34. Lüttge, U.: Modularity and emergence:biology’schallengein understanding life. Plant Biol. 14, 865–871 (2012). https://doi.org/10.1111/j.1438-8677.2012.00659.x

    Article  Google Scholar 

  35. Flaig, W., Beutelspacher, H., and Rietz, E.: In J. E. Gieseking (ed.), Soil Components, Vol. 1, Organic Components, Springer Verlag, New York. pp. 1–211 (1975).

  36. Frimmel, F.H., Christman R.F.: Wiley-Interscience, Chichester, pp. 75–9 (1975).

  37. Haishi, Q., Yue, Z., Xinyu, Z., Tianxue, Y., Qiuling, D., Junqiu, W., Pin, L., Hua, W., Zimin, W.: Effect of manganese dioxide on the formation of humin during different agricultural organic wastes compostable environments: it is meaningful carbon sequestration. Bioresour. Technol. 299, 122596 (2019). https://doi.org/10.1016/j.biortech.2019.122596

    Article  Google Scholar 

  38. Baglieri, A., Ioppolo, A., Negre, M., Gennari, M.: A method for isolating soil organic matter after the extraction of humic and fulvic acids. Organ. Geochem. 38(1), 140–150 (2007). https://doi.org/10.1016/j.orggeochem.2006.07.007

    Article  Google Scholar 

  39. Lepane, V., Künnis-Beres, K., Kaup, E., Sharma, B.: Dissolved organic matter, nutrients, and bacteria in Antarctic soil core from Schirmacher Oasis. J. Soils Sedim. 18(8), 2715–2726 (2018). https://doi.org/10.1007/s11368-018-1913-7

    Article  Google Scholar 

  40. Bissonnais, Y.L., Arrouays, D.: Aggregate stability and assessment of soil crustability and erodibility: II. Application to humic loamy soils with various organic carbon contents. Eur. J. Soil Sci. 48(1), 39–48 (1997). https://doi.org/10.1111/j.1365-2389.1997.tb00183.x

    Article  Google Scholar 

  41. Robinson, G.W.: Note on the mechanical analysis of humus soils. J. Agric. Sci. 12(3), 287–291 (1922). https://doi.org/10.1017/S0021859600005347

    Article  Google Scholar 

  42. Fan, L., Zhang, Y., Li, X., Luo, C., Lu, F., Qiu, H.: Removal of alizarin red from water environment using magnetic chitosan with Alizarin Red as imprinted molecules. Coll. Surf. B 91, 250–257 (2012). https://doi.org/10.1016/j.colsurfb.2011.11.014

    Article  Google Scholar 

  43. Coey, J.M.D., Cass, S.: Magnetic water treatment. J. Magn. Magn. Mater. 209(1), 71–74 (2000). https://doi.org/10.1016/S0304-8853(99)00648-4

    Article  Google Scholar 

  44. Pang, X.F.: The experimental evidences of the magnetism of water by magnetic-field treatment. IEEE Trans. Appl. Supercond. 24(5), 1–6 (2014). https://doi.org/10.1109/TASC.2014.2340455

    Article  Google Scholar 

  45. Stevenson, F.J.: Humus chemistry. Wiley, New York (1982)

    Google Scholar 

  46. Buffle, J.: Complexation reaction in aquatic systems: an analytical approach. Ellis Horwood Ltd, Chichester (1988)

    Google Scholar 

  47. Su, N., Wu, C.-F.: Effect of magnetic field treated water on mortar and concrete containing fly ash. Cem. Concr. Compos. 25(7), 681–688 (2003). https://doi.org/10.1016/S0958-9465(02)00098-7

    Article  Google Scholar 

  48. Horne, R.A.: The physical chemistry and structure of sea water. Water Resour. Res. 1(2), 263–276 (1965). https://doi.org/10.1029/WR001i002p00263

    Article  Google Scholar 

  49. Sugita, Q., Yu, S., Sawayama, K., Isojima, Y.: Effect of electron water curing and electron charging curing on concrete strength. Cem. Concr. Res. 28(9), 1201–1208 (1998). https://doi.org/10.1016/S0008-8846(98)00118-5

    Article  Google Scholar 

  50. Schnitzer, M., Khan, S.U.: Soil organic matter, p. 51. Elsevier Scientific Publ, New York (1978)

    Google Scholar 

  51. Mac Carthy, P.: A proposal to establish a reference collection of humic materials for interlaboratory comparisons. Geoderma 16, 179–181 (1976)

    Article  Google Scholar 

  52. Li, L., Fan, M., Brown, R.C., Van Leeuwen, J., Wang, J., Wang, W., Song, Y., Zhang, P.: Synthesis, properties, and environmen-tal applications of nanoscale iron-based materi-als: a review. Crit. Rev. Environ. Sci. Technol. 36(5), 405–431 (2006)

    Article  Google Scholar 

  53. Murad, S.: the role of magnetic fields on the membrane-based separation of aqueous electrolyte solutions. Chem. Phys. Lett. 417, 465–470 (2006)

    Article  Google Scholar 

  54. Mghaiouini, R., Elmlouky, A., Salah, M., Al- Antary, T., Monkade, M., El Bouari, A., Ghidan, A.: Effect of electromagnetic fields on the pH of water under kinetic conditions. Fresenius Environ. Bull. 29, 7922–7933 (2020)

    Google Scholar 

  55. Mghaiouini, R., Monkade, M., El Bouari, A.: Investigate the effects of salinity and temperature on the surface tension of an electromagnetic water. Phys. Scr. 96, 025805 (2021). https://doi.org/10.1088/1402-4896/abd0b9

    Article  Google Scholar 

  56. Amiri, M.C., Dadkhah, A.A.: On reduction of the surface tension of water due to magnetic treatment. Colloids Surf. 278, 252–255 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank company planet horizons technologies SA (Switzerland), to provide assistance in Aqua-4D electromagnetic processing equipment.

Funding

No funds received to carry out this study School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Redouane Mghaiouini.

Ethics declarations

Conflict of interest

The Author declares no conflict of interest in publishing this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mghaiouini, R., Benzibiria, N., Monkade, M. et al. Formulation of New Biostimulant of Plant and Soil Correction Based on Humic Acids Extracted by Magnetized Water from Compost from the Waste of Coffee Marc and Cattle Manure. Waste Biomass Valor 13, 453–465 (2022). https://doi.org/10.1007/s12649-021-01535-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01535-6

Keywords

Navigation