Skip to main content

Advertisement

Log in

Current Advances of Resource Utilization of Herbal Extraction Residues in China

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

China is the largest consumer and producer of herbal medicine known as traditional Chinese medicine in the world. After the extraction of medicinal plants’ functional ingredients, large amounts of herbal extracted residues would be manufactured. It is estimated that there are more than 1500 medicinal herb companies in China; the annual yield of Chinese herb extracted residues (CHERs) is up to 35 million tons. However, herbal residues are managed through landfills rather than being considered as renewable lignocellulosic biomass. A review concerning the utilization ways and technologies of CHERs is presented, focusing on energy utilization strategies, including direct combustion, thermochemical and biochemical conversion. Other technologies, such as adsorbents products, composting and fertilizers, biorefinery for bioethanol, bio-based chemicals, and re-extraction of other ingredients are also presented. Based on the technology status and potential, the future research and development of herb residues in biomass energy to develop a low-carbon economy for the traditional Chinese medicine industry are proposed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fang, L., Wang, B.: Study on current trends in the development of traditional Chinese medicine in Australia and policy proposals of internationalization of traditional Chinese medicine education in future. Chinese Medicine and Culture. 2(3), 132–136 (2019)

    Article  MathSciNet  Google Scholar 

  2. Guo, F.Q., Dong, Y.P., Dong, L., Jing, Y.Z.: An innovative example of herb residues recycling by gasification in a fluidized bed. Waste Manage. 33, 825–832 (2013)

    Article  Google Scholar 

  3. Wang, C., Su, X., Sun, W., Zhou, S., Zheng, J., Zhang, M., Sun, M., Xue, J., Liu, X., Xing, J., Chen, S.: Efficient production of succinic acid from herbal extraction residue hydrolysate. Bioresour. Technol. 265, 443–449 (2018)

    Article  Google Scholar 

  4. Guo, F., Dong, Y., Zhang, T., Dong, L., Guo, C., Rao, Z.: Experimental study on herb residue gasification in an air-blown circulating fluidized bed gasifier. Ind. Eng. Chem. Res. 53, 13264–13273 (2014)

    Article  Google Scholar 

  5. Meng, F., Yang, S., Wang, X., Chen, T., Wang, X., Tang, X., Zhang, R., Shen, L.: Reclamation of Chinese herb residues using probiotics and evaluation of their beneficial effect on pathogen infection. J. Infect. Public. Heal. 10, 749–754 (2017)

    Article  Google Scholar 

  6. Lu, Q., Li, C.: Comprehensive utilization of Chinese medicine residues for industry and environment protection: turning waste into treasure. J. Clean. Prod. 279, 123856 (2021)

    Article  Google Scholar 

  7. Zhao, B., Zhang, X., Xu, A., Ding, W., Sun, L., Chen, L., Guan, H., Yang, S., Zhou, W.: A study of the in-situ CO2 removal pyrolysis of Chinese herb residue for syngas production. Sci. Total Environ. 626, 703–709 (2018)

    Article  Google Scholar 

  8. Saha, A., Basak, B.B.: Scope of value addition and utilization of residual biomass from medicinal and aromatic plants. Ind. Crop. Prod. 145, 111979 (2020)

    Article  Google Scholar 

  9. Zhu, G.Y., Xiao, Z.B., Zhou, R.J., Niu, Y.W., Yi, F.P., Zhu, J.C.: The Utilization of aromatic plant waste resource. Adv. Mater. Res-Switz. 518–523, 3561–3565 (2012)

    Article  Google Scholar 

  10. Kong, W., Huang, C., Shi, J., Li, Y., Jiang, X., Duan, Q., Huang, Y., Zhu, X.: Recycling of Chinese herb residues by endophytic and probiotic fungus Aspergillus cristatus CB10002 for the production of medicinal valuable anthraquinones. Microb. Cell Fact. 18(1), 102–102 (2019)

    Article  Google Scholar 

  11. Zhou, Y., Selvam, A., Wong, J.W.C.: Chinese medicinal herbal residues as a bulking agent for food waste composting. Bioresour. Technol. 249, 182–188 (2018)

    Article  Google Scholar 

  12. Abdallah, A., Zhang, P., Zhong, Q., Sun, Z.: Application of traditional Chinese herbal medicine by-products as dietary feed supplements and antibiotic replacements in animal production. Curr. Drug Metab. 20(1), 54–64 (2019)

    Article  Google Scholar 

  13. Zhao, S., Zhou, T.: Biosorption of methylene blue from wastewater by an extraction residue of Salvia miltiorrhiza Bge. Bioresour. Technol. 219, 330–337 (2016)

    Article  Google Scholar 

  14. Saha, A., Basak, B.B., Manivel, P., Kumar, J.: Valorization of Java citronella (Cymbopogon winterianus Jowitt) distillation waste as a potential source of phenolics/antioxidant: influence of extraction solvents. J. Food Sci. Technol. 58(1), 255–266 (2021)

    Article  Google Scholar 

  15. Jiang, Y., Wang, L., Zhang, L., Wang, T., Zhou, Y., Ding, C., Yang, R., Wang, X., Yu, L.: Optimization of extraction and antioxidant activity of polysaccharides from Salvia miltiorrhiza Bunge residue. Int. J. Biol. Macromol. 79, 533–541 (2015)

    Article  Google Scholar 

  16. Gong, Y., Liu, X., He, W., Xu, H., Yuan, F., Gao, Y.: Investigation into the antioxidant activity and chemical composition of alcoholic extracts from defatted marigold (Tagetes erecta L.) residue. Fitoterapia 83(3), 481–489 (2012).

  17. Li, K., Li, S., Wang, D., Li, X., Wu, X., Liu, X., Du, G., Li, X., Qin, X., Du, Y.: Extraction, characterization, antitumor and immunological activities of hemicellulose polysaccharide from Astragalus radix herb residue. Molecules 24(20), 3644 (2019)

    Article  Google Scholar 

  18. Hao, X., Li, K., Wang, G.Z., Liu, L., Miao, Y.H., Qin, X.M.: Extraction, separation and structural analysis of arabinoxylans from the residue of Astragalus root. J. Shanxi Med. Univ. 47, 338–343 (2016)

    Google Scholar 

  19. Menon, V., Rao, M.: Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog. Energ. Combust. 38(4), 522–550 (2012)

    Article  Google Scholar 

  20. Zhang, S., Chang, S., Xiao, P., Qiu, S., Ye, Y., Li, L., Yan, H., Guo, S., Duan, J.: Enzymatic in situ saccharification of herbal extraction residue by a medicinal herbal-tolerant cellulase. Bioresour. Technol. 287, 121417 (2019)

    Article  Google Scholar 

  21. Yu, Q., Zhang, A., Wang, W., Chen, L., Bai, R., Zhuang, X., Wang, Q., Wang, Z., Yuan, Z.: Deep eutectic solvents from hemicellulose-derived acids for the cellulosic ethanol refining of Akebia’ herbal residues. Bioresour. Technol. 247, 705–710 (2018)

    Article  Google Scholar 

  22. Zhang, Y., Zheng, Q., Zhou, Y., Zhou, L.: Efficient production of ethanol from herb residue with recombinant yeast. Chin. Tradit. Patent Med. 038(006), 1421–1424 (2016)

    Google Scholar 

  23. Nguyen, C.M., Nguyen, T.N., Choi, G.J., Choi, Y.H., Jang, K.S., Park, Y.J., Kim, J.C.: Acid hydrolysis of Curcuma longa residue for ethanol and lactic acid fermentation. Bioresour. Technol. 151, 227–235 (2014)

    Article  Google Scholar 

  24. Becker, J., Lange, A., Fabarius, J., Wittmann, C.: Top value platform chemicals: bio-based production of organic acids. Curr. Opin. Biotechnol. 36, 168–175 (2015)

    Article  Google Scholar 

  25. Wang, J., Gao, M., Liu, J., Wang, Q., Wang, C., Yin, Z., Wu, C.: Lactic acid production from Sophora flavescens residues pretreated with sodium hydroxide: Reutilization of the pretreated liquor during fermentation. Bioresour. Technol. 241, 915–921 (2017)

    Article  Google Scholar 

  26. Zheng, J., Gao, M., Wang, Q., Wang, J., Sun, X., Chang, Q., Tashiro, Y.: Enhancement of l-lactic acid production via synergism in open co-fermentation of Sophora flavescens residues and food waste. Bioresour. Technol. 225, 159–164 (2017)

    Article  Google Scholar 

  27. Nguyen, C.M., Kim, J.-S., Nguyen, T.N., Kim, S.K., Choi, G.J., Choi, Y.H., Jang, K.S., Kim, J.-C.: Production of l- and d-lactic acid from waste Curcuma longa biomass through simultaneous saccharification and cofermentation. Bioresour. Technol. 146, 35–43 (2013)

    Article  Google Scholar 

  28. Sulyman, M., Namiesnik, J., Gierak, A.: Low-cost adsorbents derived from agricultural by-products/wastes for enhancing contaminant uptakes from wastewater: a review. Pol. J. Environ. Stud. 26(2), 479–510 (2017)

    Article  Google Scholar 

  29. Saha, A., Tripathy, V., Basak, B.B., Kumar, J.: Entrapment of distilled palmarosa (cymbopogon martinii) wastes in alginate beads for adsorptive removal of methylene blue from aqueous solution. Environ. Prog. Sustain. 37(6), 1942–1953 (2018)

    Article  Google Scholar 

  30. Saha, A., Basak, B.B., Gajbhiye, N.A., Kalariya, K.A., Manivel, P.: Sustainable fertilization through co-application of biochar and chemical fertilizers improves yield, quality of Andrographis paniculata and soil health. Ind. Crop. Prod. 140, 111607 (2019).

  31. Saha, A., Basak, B.B., Ponnuchamy, M.: Performance of activated carbon derived from Cymbopogon winterianus distillation waste for scavenging of aqueous toxic anionic dye Congo red: comparison with commercial activated carbon. Sep. Sci. Technol. 55(11), 1970–1983 (2019)

    Article  Google Scholar 

  32. Yuan, H., Tao, L., Wang, Y., Huang, H., Chen, Y.: Influence of pyrolysis temperature and holding time on properties of biochar derived from medicinal herb (radix isatidis) residue and its effect on soil CO2 emission. J. Anal. Appl. Pyrol. 110, 277–284 (2014)

    Article  Google Scholar 

  33. Lian, F., Sun, B., Song, Z., Zhu, L., Qi, X., Xing, B.: Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole. Chem. Eng. J. 248, 128–134 (2014)

    Article  Google Scholar 

  34. Shang, J., Pi, J., Zong, M., Wang, Y., Li, W., Liao, Q.: Chromium removal using magnetic biochar derived from herb-residue. J. Taiwan Inst. Chem. E. 68, 289–294 (2016)

    Article  Google Scholar 

  35. Yang, J., Qiu, K.: Experimental design to optimize the preparation of activated carbons from herb residues by vacuum and traditional ZnCl2 chemical activation. Ind. Eng. Chem. Res. 50(7), 4057–4064 (2011)

    Article  Google Scholar 

  36. Yu, Z., Gao, Q., Zhang, Y., Wang, D., Nyalala, I., Chen, K.: Production of activated carbon from sludge and herb residue of traditional Chinese Medicine industry and its application for methylene blue removal. BioResources 14(1), 1333–1346 (2019)

    Article  Google Scholar 

  37. Ge, X., Zhong, Y.: Preparation of super activated carbon from Chinese herb residues. Carbon Tech. 033 (2), 34–38, 58 (2014).

  38. Yu, Y., Sun, X., Chen, J., Ming, G., Shang, J.: Adsorption of cefradine on activated carbon prepared from chinese medicine residue. Biomass Chem. Eng. 51(4), 25–32 (2017)

    Google Scholar 

  39. Chen, S., Zhang, J., Zhang, H., Wang, X.: Removal of hexavalent chromium from contaminated water by Chinese herb-extraction residues. Water Air. Soil Poll. 228(4), 145 (2017)

    Article  Google Scholar 

  40. Liu, Y., Chang, X., Guo, Y., Meng, S.: Biosorption and preconcentration of lead and cadmium on waste Chinese herb Pang Da Hai. J. Hazard. Mater. 135(13), 389–394 (2006)

    Article  Google Scholar 

  41. Sharma, B., Vaish, B., Monika, Singh, U.K., Singh, P., Singh, R.P.: Recycling of organic Wastes in agriculture: an environmental perspective. Int. J. Environ. Res. 13, 409–429 (2019).

  42. Ma, J., Chen, Y., Zhao, Y., Chen, D., Wang, H.: Effects of traditional Chinese medicine residue on plant growth and soil properties: a case study with maize (Zea mays L.). Environ. Sci. Pollut. Res. Int. 26(32), 32880–32890 (2019)

    Article  Google Scholar 

  43. Zhou, Y., Selvam, A., Wong, J.W.C.: Effect of Chinese medicinal herbal residues on microbial community succession and anti-pathogenic properties during co-composting with food waste. Bioresour. Technol. 217, 190–199 (2016)

    Article  Google Scholar 

  44. Ma, L.: Study on treatment of herbal residue by vermicomposting. Dissertation for the Master Degree in Engineering (2017).

  45. Chang, F., Jia, F., Lv, R., Zhen, L., Li, Y., Wang, Y.: Changes in structure and function of bacterial and fungal communities in open composting of Chinese herb residues. Can. J. Microbiol. 66(3), 194–205 (2019)

    Article  Google Scholar 

  46. Mao, J., Xiao, X., Zhao, H.: Effect of optimization of Chinese herb residue on the quality and yield of straw mushrooms. Jiangsu Agric. Sci. 42(1), 265–267 (2014)

    Google Scholar 

  47. Yang, B., Kong, Y., Cao, Y.: Determination and analysis of nutritional components in fruiting body of Agrocybe cylindracea YBS 408 cultivated with Pennisetum giganteum and Chinese herbal medicine residues. Bull. Sci. Technol. 2, 58–61 (2018)

    Google Scholar 

  48. Jin, Z., Li, Y., Ren, J., Qin, N.: Yield, Nutritional content, and antioxidant activity of Pleurotus ostreatus on corncobs supplemented with herb residues. Mycobiology. 46(1), 24–32 (2018)

    Article  Google Scholar 

  49. Li, H., Zhang, Z., Li, M., Li, X., Sun, Z.: Yield, size, nutritional value, and antioxidant activity of oyster mushrooms grown on perilla stalks. Saudi J. Biol. Sci. 24(2), 347–354 (2017)

    Article  Google Scholar 

  50. Jin, Z., Hou, Q., Niu, T.: Effect of cultivating Pleurotus ostreatus on substrates supplemented with herb residues on yield characteristics, substrates degradation, and fruiting bodies' properties. J. Sci. Food Agric. 100, 4901–4910 (2020). Periodical of Ocean University of China. 1, 101–107 (2016).

  51. Liu, M., Wang, Z., Chen, L., Liu, G., Zheng, H.: Application of peanut shell and Chinese medicine mixed biochar as soil amendment to lead contaminated soil.

  52. Xiao, L.: Remediation of Cu and Cd in contaminated soil with the combination of traditional Chinese medicine slag biochar and maifanite. Dissertation for the Master Degree in Engineering (2019).

  53. Li, X., Boer, W., Zhang, Y., Ding, C., Zhang, T., Wang, X.: Suppression of soil-borne Fusarium pathogens of peanut by intercropping with the medicinal herb Atractylodes lancea. Soil Biol. Biochem. 116, 120–130 (2018)

    Article  Google Scholar 

  54. Weiland, P.: Biogas production: current state and perspectives. Appl. Microbiol. Biot. 85(4), 849–860 (2010)

    Article  Google Scholar 

  55. Wang, M., Li, W., Liu, S., Liu, D., Yin, L., Yuan, H.: Biogas production from Chinese herb-extraction residues: Influence of biomass composition on methane yield. BioResources 8(3), 3732–3740 (2013)

    Google Scholar 

  56. Zheng, Y., Zhao, J., Xu, F., Li, Y.: Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog. Energy Combust. 42(1), 35–53 (2014)

    Article  Google Scholar 

  57. Yao, L., Wang, Y., Bian, W., Li, G., Yuan, C., Cao, D.: Preliminary study on anaerobic fermentation biogas of Chinese herbal residues with pretreatment. Renew. Energy Resour. 31(11), 89–100 (2013)

    Google Scholar 

  58. Cheng, X.Y., Liu, C.Z.: Enhanced biogas production from herbal-extraction process residues by microwave-assisted alkaline pretreatment. J. Chem. Technol. Biot. 85(1), 127–131 (2010)

    Article  Google Scholar 

  59. Zhang, Y., Chen, L., Guo, X., Deng, Y.: Effect and biogas production potential of herbal-extractionresidue using anaerobic fermentation combined with microbial enhanced pretreatment. Chin. J. Environ. Eng. 8(11), 4925–4930 (2014)

    Google Scholar 

  60. Xi, Y., Zhang, L., Cui, G., Zhang, G., Li, X., He, Q., Cheng, H.: Effect of organic loading on semi-continuous anaerobic fermentation parameters of Chinese medicinal herb residues. Chin. J. Environ. Eng. 11(4), 2433–2438 (2017)

    Google Scholar 

  61. Huang, B.: Study on combustion characteristics of herb residue in fluidized bed. Dissertation for the Master Degree in Engineering (2013).

  62. Zhuang, X., Zhan, H., Huang, Y., Song, Y., Wu, C.: Influence of hydrothermal upgrading on the fuel characteristics and combustion behavior of herb wastes. J. Fuel Chem. Technol. 46(8), 940–949 (2018)

    Google Scholar 

  63. Long, X., Guo, H., Jin, R., Tang, Y., Gao, J., Meng, Q., Zhang, S.: Strategies for energy utilization of Chinese materia medica residue. Chin. Tradit. Herbal Drugs 50(7), 1505–1514 (2019)

    Google Scholar 

  64. Panwar, N.L., Kothari, R., Tyagi, V.V.: Thermo chemical conversion of biomass-Eco friendly energy routes. Renew. Sustain. Energy Rev. 16(4), 1801–1816 (2012)

    Article  Google Scholar 

  65. Wang, P., Yu, H., Zhan, S.: The catalytic pyrolysis of herb residue from the Chinese medicine industry. Energy Source Part A 34(23), 2192–2202 (2012)

    Article  Google Scholar 

  66. Wang, P., Zhan, S., Yu, H., Xue, X., Nan, H.: The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue). Bioresour. Technol. 101(9), 3236–3241 (2010)

    Article  Google Scholar 

  67. Meng, X., Yu, H., Wang, P., Rong, X.: Study on pyrolysis and resource utilization of herb residue for Chinese medicine industry in the perspective of low-carbon economy. Huan Jing Wu Ran Yu Fang Zhi 32(6), 32–35 (2010)

    Google Scholar 

  68. Zhang, B., Zhang, J.: Influence of reaction atmosphere (N2, CO, CO2, and H2) on ZSM-5 catalyzed microwave-induced fast pyrolysis of medicinal herb residue for biofuel production. Energy Fuel 31(9), 9627–9632 (2017)

    Article  Google Scholar 

  69. Zhao, B., Song, G., Zhou, W., Chen, L., Sun, L., Yang, S., Guan, H., Zhu, D., Chen, G., Ding, W., Wang, J., Yang, H.: Catalytic pyrolysis of herb residues for the preparation of hydrogen-rich gas. Energy Fuel 34(2), 1131–1136 (2020)

    Article  Google Scholar 

  70. Xu, A., Zhou, W., Zhang, X., Zhao, B., Chen, L., Sun, L., Ding, W., Yang, S., Guan, H., Bai, B.: Gas production by catalytic pyrolysis of herb residues using Ni/CaO catalysts. J. Anal. Appl. Pyrol. 130, 216–223 (2018)

    Article  Google Scholar 

  71. Ding, W., Zhang, X., Zhao, B., Zhou, W., Xu, A., Lei, C., Sun, L., Yang, S., Guan, H., Xie, X., Chen, G., Zhu, L., Song, G.: TG-FTIR and thermodynamic analysis of the herb residue pyrolysis with in-situ CO2 capture using CaO catalyst. J. Anal. Appl. Pyrol. 134, 389–394 (2018)

    Article  Google Scholar 

  72. Zeng, X., Dong, Y., Wang, F., Xu, P., Shao, R., Dong, P., Xu, G., Dong, L.: Fluidized bed two-stage gasification process for clean fuel gas production from herb residue: fundamentals and demonstration. Energy Fuel. 30(9), 7277–7283 (2016)

    Article  Google Scholar 

  73. Zeng, X., Shao, R., Wang, F., Dong, P., Yu, J., Xu, G.: Industrial demonstration plant for the gasification of herb residue by fluidized bed two-stage process. Bioresour. Technol. 206, 93–98 (2016)

    Article  Google Scholar 

  74. Guan, H., Fan, X., Zhao, B., Yang, L., Sun, R., Li, C., Yan, B.: An experimental investigation on biogases production from Chinese herb residues based on dual circulating fluidized bed. Int. J. Hydrogen Energy 43(28), 12618–12626 (2018)

    Article  Google Scholar 

  75. Yao, Z., Ma, X.: Hydrothermal carbonization of Chinese fan palm. Bioresour. Technol. 282, 28–36 (2019)

    Article  Google Scholar 

  76. Lee, J., Park, K.Y.: Conversion of heavy metal-containing biowaste from phytoremediation site to value-added solid fuel through hydrothermal carbonization. Environ. Pollut. 269, 116127 (2021)

    Article  Google Scholar 

  77. Zhuang, Y., Zhan, H., Huang, Y., Song, Y., Yin, X., Wu, C.: Influence of hydrothermal upgrading on the fuel characteristics and combustion behavior of herb wastes. J. Fuel Chem. Technol. 046(008), 940–949 (2018)

    Google Scholar 

  78. Román, S., Nabais, J.M.V.C., Laginhas, C., Ledesma, B., González, J.F.: Hydrothermal carbonization as an effective way of densifying the energy content of biomass. Fuel Process. Technol. 103, 78–83 (2012)

    Article  Google Scholar 

  79. Rasam, S., Moraveji, M.K., Soria-Verdugo, A., Salimi, A.: Synthesis, characterization and absorbability of Crocus sativus petals hydrothermal carbonized hydrochar and activated hydrochar. Chem. Eng. Process. 159, 108236 (2021)

    Article  Google Scholar 

  80. Meng, X., Yu, H., Wang, P., Jie, X.: Study on pyrolysis and resource utilization of herb residue for Chinese medicine industry in the perspective of low-carbon economy. Environ. Pollut. Control. 32(6), 32–35 (2010)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Support Program of Jiangsu Province. (BE2016626, BA2018002)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, W., Jin, J., Zheng, Y. et al. Current Advances of Resource Utilization of Herbal Extraction Residues in China. Waste Biomass Valor 12, 5853–5868 (2021). https://doi.org/10.1007/s12649-021-01428-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01428-8

Keywords

Navigation