Skip to main content
Log in

Multivariate Analyses of the Antioxidant, Antidiabetic, Antimicrobial Activity of Pomegranate Tissues with Respect to Pomegranate Juice

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The pomegranate tissues investigated in this study included pomegranate peel (PP), pomegranate seed (PS), pomegranate mesocarp (PM), and pomegranate juice (PJ).

Methods

The total contents of phenolics (TPC), flavonoids (TFC), and hydrolysable tannins (HTC) of pomegranate tissues were analyzed. The individual phenolics of pomegranate tissues were identified by LC–ESI–MS/MS and catechin and ellagic acid was found as the main phenolics in the four tissues. Interrelationship among the results was performed by using principal component analysis (PCA).

Results

According to antioxidant results performed by DPPH, ABTS, FRAP, and CUPRAC, PP was to be rich in antioxidant agents in comparison to PM, PS, and PJ. Pomegranate tissues had remarkable effect on anti-α-glucosidase activity compared to their anti- amylase activity. Four tissues exhibited different antimicrobial activity against pathogens, including Escherichia coli, Staphylococcus Aureus, Pseudomonas aeruginosa, Enterococcus faecalis, Candida albicans, Austromerope brasiliensis. The multivariate application of the results allowed the reduction of the data to two uncorrelated principal components consisting of 99% of the total variance.

Conclusion

Pomegranate is not just considered as a source of juice. Its wastes could be also evaluated in different industry because of their high biological activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Henning, S.M., Yang, J., Lee, R.-P., Huang, J., Hsu, M., Thames, G., Gilbuena, I., Long, J., Xu, Y., Park, E.H., Tseng, C.-H., Kim, J., Heber, D., Li, Z.: Pomegranate juice and extract consumption increases the resistance to UVB-induced erythema and changes the skin microbiome in healthy women: a randomized controlled trial. Sci. Reports. 9, 1–11 (2019). https://doi.org/10.1038/s41598-019-50926-2

    Article  Google Scholar 

  2. Asgary, S., Javanmard, S., Zarfeshany, A.: Potent health effects of pomegranate. Adv. Biomed. Res. 3, 100 (2014). https://doi.org/10.4103/2277-9175.129371

    Article  Google Scholar 

  3. Du, L., Li, J., Zhang, X., Wang, L., Zhang, W.: Pomegranate peel polyphenols inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of MAPKs activation. J. Funct. Foods. 43, 62–69 (2018). https://doi.org/10.1016/j.jff.2018.01.028

    Article  Google Scholar 

  4. Tortora, K., Femia, A.P., Romagnoli, A., Sineo, I., Khatib, M., Mulinacci, N., Giovannelli, L., Caderni, G.: Pomegranate by-products in colorectal cancer chemoprevention: effects in Apc -mutated pirc rats and mechanistic studies in vitro and ex vivo. Mol. Nutr. Food Res. 62, 1700401 (2017). https://doi.org/10.1002/mnfr.201700401

    Article  Google Scholar 

  5. Šavikin, K., Živković, J., Alimpić, A., Zdunić, G., Janković, T., Duletić-Laušević, S., Menković, N.: Activity guided fractionation of pomegranate extract and its antioxidant, antidiabetic and antineurodegenerative properties. Ind. Crop. Prod. 113, 142–149 (2018). https://doi.org/10.1016/j.indcrop.2018.01.031

    Article  Google Scholar 

  6. Alexandre, E.M.C., Silva, S., Santos, S.A.O., Silvestre, A.J.D., Duarte, M.F., Saraiva, J.A., Pintado, M.: Antimicrobial activity of pomegranate peel extracts performed by high pressure and enzymatic assisted extraction. Food Res. Int. 115, 167–176 (2019). https://doi.org/10.1016/j.foodres.2018.08.044

    Article  Google Scholar 

  7. Arruda, H.S., Pereira, G.A., Pastore, G.M.: Optimization of extraction parameters of total phenolics from Annona crassiflora Mart. (Araticum) fruits using response surface methodology. Food Anal. Methods. 10, 100–110 (2016). https://doi.org/10.1007/s12161-016-0554-y

    Article  Google Scholar 

  8. Gulcin, İ: Antioxidants and antioxidant methods: an updated overview. Arch. Toxicol. 94, 651–715 (2020). https://doi.org/10.1007/s00204-020-02689-3

    Article  Google Scholar 

  9. Ozturk, B., Parkinson, C., Gonzalez-Miquel, M.: Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents. Sep. Purif. Technol. 206, 1–13 (2018). https://doi.org/10.1016/j.seppur.2018.05.052

    Article  Google Scholar 

  10. Rodsamran, P., Sothornvit, R.: Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food Biosci. 28, 66–73 (2019). https://doi.org/10.1016/j.fbio.2019.01.017

    Article  Google Scholar 

  11. Plazzotta, S., Ibarz, R., Manzocco, L., Martín-Belloso, O.: Optimizing the antioxidant biocompound recovery from peach waste extraction assisted by ultrasounds or microwaves. Ultrason. Sonochem. 63, 104954 (2020)

    Article  Google Scholar 

  12. Martinez-Fernandez, J.S., Seker, A., Davaritouchaee, M., Gu, X., Chen, S.: Recovering Valuable bioactive compounds from potato peels with sequential hydrothermal extraction. Waste Biomass Valoriz. 12, 1465–1481 (2020). https://doi.org/10.1007/s12649-020-01063-9

    Article  Google Scholar 

  13. Nile, S.H., Nile, A., Oh, J.-W., Kai, G.: Soybean processing waste: potential antioxidant, cytotoxic and enzyme inhibitory activities. Food Biosci. 38, 100778 (2020). https://doi.org/10.1016/j.fbio.2020.100778

    Article  Google Scholar 

  14. Vázquez-González, M., Fernández-Prior, Á., Bermúdez Oria, A., Rodríguez-Juan, E.M., Pérez-Rubio, A.G., Fernández-Bolaños, J., Rodríguez-Gutiérrez, G.: Utilization of strawberry and raspberry waste for the extraction of bioactive compounds by deep eutectic solvents. LWT. 130, 109645 (2020). https://doi.org/10.1016/j.lwt.2020.109645

    Article  Google Scholar 

  15. Kharchoufi, S., Licciardello, F., Siracusa, L., Muratore, G., Hamdi, M., Restuccia, C.: Antimicrobial and antioxidant features of ‘Gabsiʼ pomegranate peel extracts. Ind. Crop. Prod. 111, 345–352 (2018). https://doi.org/10.1016/j.indcrop.2017.10.037

    Article  Google Scholar 

  16. Singleton, V., Rossi, J.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16(3), 144–158 (1965)

    Google Scholar 

  17. Zhishen, J., Mengcheng, T., Jianming, W.: The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64, 555–559 (1999). https://doi.org/10.1016/s0308-8146(98)00102-2

    Article  Google Scholar 

  18. Willis, R.B.: Improved method for measuring hydrolyzable tannins using potassium iodate. Anal. 123, 435–439 (1998). https://doi.org/10.1039/a706862j

    Article  Google Scholar 

  19. Lako, J., Trenerry, V., Wahlqvist, M., Wattanapenpaıboon, N., Sotheeswaran, S., Premier, R.: Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of Fijian fruit, vegetables and other readily available foods. Food Chem. 101, 1727–1741 (2007). https://doi.org/10.1016/j.foodchem.2006.01.031

    Article  Google Scholar 

  20. Başyiğit, B., Sağlam, H., Köroğlu, K., Karaaslan, M.: Compositional analysis, biological activity, and food protecting ability of ethanolic extract of Quercus infectoria gall. J. Food Process. Preserv. 44, e14692 (2020). https://doi.org/10.1111/jfpp.14692

    Article  Google Scholar 

  21. Çam, M., Hışıl, Y., Durmaz, G.: Classification of eight pomegranate juices based on antioxidant capacity measured by four methods. Food Chem. 112, 721–726 (2009). https://doi.org/10.1016/j.foodchem.2008.06.009

    Article  Google Scholar 

  22. Apak, R., Güçlü, K., Özyürek, M., Çelik, S.E.: Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim. Acta. 160, 413–419 (2007). https://doi.org/10.1007/s00604-007-0777-0

    Article  Google Scholar 

  23. Benzie, I.F.F., Strain, J.J.: The Ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239, 70–76 (1996). https://doi.org/10.1006/abio.1996.0292

    Article  Google Scholar 

  24. McDougall, G.J., Shpiro, F., Dobson, P., Smith, P., Blake, A., Stewart, D.: Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase. J. Agric. Food Chem. 53, 2760–2766 (2005). https://doi.org/10.1021/jf0489926

    Article  Google Scholar 

  25. Maruszewska, A., Tarasiuk, J.: Antitumour effects of selected plant polyphenols, gallic acid and ellagic acid, on sensitive and multidrug-resistant leukaemia HL60 cells. Phytother. Res. 33, 1208–1221 (2019). https://doi.org/10.1002/ptr.6317

    Article  Google Scholar 

  26. Shakeri, A., Zirak, M.R., Sahebkar, A.: Ellagic acid: a logical lead for drug development? Curr. Pharm. Des. 24, 106–122 (2018). https://doi.org/10.2174/1381612823666171115094557

    Article  Google Scholar 

  27. Kubota, S., Tanaka, Y., Nagaoka, S.: Ellagic acid affects mRNA expression levels of genes that regulate cholesterol metabolism in HepG2 cells. Biosci. Biotechnol. Biochem. 83, 952–959 (2019). https://doi.org/10.1080/09168451.2019.1576498

    Article  Google Scholar 

  28. Isemura, M.: Catechin in human health and disease. Molecules 24, 528 (2019). https://doi.org/10.3390/molecules24030528

    Article  Google Scholar 

  29. Bernatoniene, J., Kopustinskiene, D.: The role of catechins in cellular responses to oxidative stress. Molecules 23, 965 (2018). https://doi.org/10.3390/molecules23040965

    Article  Google Scholar 

  30. Cai, Y., Luo, Q., Sun, M., Corke, H.: Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 74, 2157–2184 (2004). https://doi.org/10.1016/j.lfs.2003.09.047

    Article  Google Scholar 

  31. Purewal, S.S., Salar, R.K., Bhatti, M.S., Sandhu, K.S., Singh, S.K., Kaur, P.: Solid-state fermentation of pearl millet with Aspergillus oryzae and Rhizopus azygosporus: effects on bioactive profile and DNA damage protection activity. J. Food Meas. Charact. 14, 150–162 (2019). https://doi.org/10.1007/s11694-019-00277-3

    Article  Google Scholar 

  32. Salar, R.K., Purewal, S.S., Bhatti, M.S.: Optimization of extraction conditions and enhancement of phenolic content and antioxidant activity of pearl millet fermented with Aspergillus awamori MTCC-548. Resour. Technol. 2, 148–157 (2016). https://doi.org/10.1016/j.reffit.2016.08.002

    Article  Google Scholar 

  33. Tohma, H., Gülçin, İ., Bursal, E., Gören, A.C., Alwasel, S.H., Köksal, E.: Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.) determined by HPLC-MS/MS. J. Food Meas. Charact. 11, 556–566 (2016). https://doi.org/10.1007/s11694-016-9423-z

    Article  Google Scholar 

  34. Singh, R.P., Chidambara Murthy, K.N., Jayaprakasha, G.K.: Studies on the antioxidant activity of pomegranate (Punicagranatum) peel and seed extracts using in vitro models. J. Agric. Food Chem. 50, 81–86 (2002). https://doi.org/10.1021/jf010865b

    Article  Google Scholar 

  35. Yan, L., Zhou, X., Shi, L., Shalimu, D., Ma, C., Liu, Y.: Phenolic profiles and antioxidant activities of six Chinese pomegranate (Punica granatum L.) cultivars. Int. J. Food Prop. 20, 94–107 (2017). https://doi.org/10.1080/10942912.2017.1289960

    Article  Google Scholar 

  36. Elfalleh, W.: Total phenolic contents and antioxidant activities of pomegranate peel, seed, leaf and flower. J. Med. Plants Res. (2012). https://doi.org/10.5897/jmpr11.995

    Article  Google Scholar 

  37. FischerCarleKammerer, U.A.R.D.R.: Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD–ESI/MSn. Food Chem. 127, 807–821 (2011). https://doi.org/10.1016/j.foodchem.2010.12.156

    Article  Google Scholar 

  38. Floegel, A., Kim, D.-O., Chung, S.-J., Koo, S.I., Chun, O.K.: Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 24, 1043–1048 (2011). https://doi.org/10.1016/j.jfca.2011.01.008

    Article  Google Scholar 

  39. Saravanakumar, K., Sarikurkcu, C., Sarikurkcu, R.T., Wang, M.-H.: A comparative study on the phenolic composition, antioxidant and enzyme inhibition activities of two endemic Onosma species. Ind. Crop. Prod. 142, 111878 (2019). https://doi.org/10.1016/j.indcrop.2019.111878

    Article  Google Scholar 

  40. Guo, C., Yang, J., Wei, J., Li, Y., Xu, J., Jiang, Y.: Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutr. Res. 23, 1719–1726 (2003). https://doi.org/10.1016/j.nutres.2003.08.005

    Article  Google Scholar 

  41. Hasnaoui, N., Wathelet, B., Jiménez-Araujo, A.: Valorization of pomegranate peel from 12 cultivars: Dietary fibre composition, antioxidant capacity and functional properties. Food Chem. 160, 196–203 (2014). https://doi.org/10.1016/j.foodchem.2014.03.089

    Article  Google Scholar 

  42. Chawla, R., Chawla, A., Jaggi, S.: Microvasular and macrovascular complications in diabetes mellitus: distinct or continuum? Indian J. Endocrinol. Metab. 20, 546 (2016). https://doi.org/10.4103/2230-8210.183480

    Article  Google Scholar 

  43. Gregg, E.W., Li, Y., Wang, J., Rios Burrows, N., Ali, M.K., Rolka, D., Williams, D.E., Geiss, L.: Changes in diabetes-related complications in the United States, 1990–2010. New Engl. J. Med. 370, 1514–1523 (2014). https://doi.org/10.1056/nejmoa1310799

    Article  Google Scholar 

  44. Sekar, V., Chakraborty, S., Mani, S., Sali, V.K., Vasanthi, H.R.: Mangiferin from Mangifera indica fruits reduces post-prandial glucose level by inhibiting α-glucosidase and α-amylase activity. South Afr. J. Bot. 120, 129–134 (2019). https://doi.org/10.1016/j.sajb.2018.02.001

    Article  Google Scholar 

  45. McMacken, M., Shah, S.: A plant-based diet for the prevention and treatment of type 2 diabetes. J. Geriatr. Cardiol. 14, 342–354 (2017). https://doi.org/10.11909/j.issn.1671-5411.2017.05.009

    Article  Google Scholar 

  46. Gulçin, İ, Taslimi, P., Aygün, A., Sadeghian, N., Bastem, E., Kufrevioglu, O.I., Turkan, F., Şen, F.: Antidiabetic and antiparasitic potentials: Inhibition effects of some natural antioxidant compounds on α-glycosidase, α-amylase and human glutathione S-transferase enzymes. Int. J. Biol. Macromol. 119, 741–746 (2018). https://doi.org/10.1016/j.ijbiomac.2018.08.001

    Article  Google Scholar 

  47. Justino, A.B., Miranda, N.C., Franco, R.R., Martins, M.M., Silva, N.M. da, Espindola, F.S.: Annona muricata Linn. leaf as a source of antioxidant compounds with in vitro antidiabetic and inhibitory potential against α-amylase, α-glucosidase, lipase, non-enzymatic glycation and lipid peroxidation. Biomed. Pharmacother. 100, 83–92 (2018). https://doi.org/10.1016/j.biopha.2018.01.172

    Article  Google Scholar 

  48. Gaber, A., Hassan, M.M., Dessoky, E.D.S., Attia, A.O.: In vitro antimicrobial comparison of Taif and Egyptian pomegranate peels and seeds extracts. J Appl Biol Biotechnol. 3, 12–17 (2015)

    Article  Google Scholar 

  49. Hama, A.A., Taha, Y., Qadir, S.A.: The antimicrobial activity of pomegranate (Punica granatum) juice. J. Sci. Eng. Res. 5, 796–798 (2014)

    Google Scholar 

  50. Drogoudi, P., Pantelidis, G.E., Goulas, V., Manganaris, G.A., Ziogas, V., Manganaris, A.: The appraisal of qualitative parameters and antioxidant contents during postharvest peach fruit ripening underlines the genotype significance. Postharvest Biol. Technol. 115, 142–150 (2016). https://doi.org/10.1016/j.postharvbio.2015.12.002

    Article  Google Scholar 

  51. Chang, S.-T., Wu, J.-H., Wang, S.-Y., Kang, P.-L., Yang, N.-S., Shyur, L.-F.: Antioxidant activity of extracts from Acacia confuse bark and heartwood. J. Agric. Food Chem. 49, 3420–3424 (2001). https://doi.org/10.1021/jf0100907

    Article  Google Scholar 

  52. Fernandes, M.R.V., Dias, A.L.T., Carvalho, R.R., Souza, C.R.F., Oliveira, W.P.: Antioxidant and antimicrobial activities of Psidium guajava L. spray dried extracts. Ind. Crop. Prod. 60, 39–44 (2014). https://doi.org/10.1016/j.indcrop.2014.05.049

    Article  Google Scholar 

  53. Gullon, B., Pintado, M.E., Fernández-López, J., Pérez-Álvarez, J.A., Viuda-Martos, M.: In vitro gastrointestinal digestion of pomegranate peel (Punica granatum) flour obtained from co-products: changes in the antioxidant potential and bioactive compounds stability. J. Funct. Foods. 19, 617–628 (2015). https://doi.org/10.1016/j.jff.2015.09.056

    Article  Google Scholar 

  54. Borrás-Linares, I., Fernández-Arroyo, S., Arráez-Roman, D., Palmeros-Suárez, P.A., Del Val-Díaz, R., Andrade-Gonzáles, I., Fernández-Gutiérrez, A., Gómez-Leyva, J.F., Segura-Carretero, A.: Characterization of phenolic compounds, anthocyanidin, antioxidant and antimicrobial activity of 25 varieties of Mexican Roselle (Hibiscus sabdariffa). Ind. Crop. Prod. 69, 385–394 (2015). https://doi.org/10.1016/j.indcrop.2015.02.053

    Article  Google Scholar 

  55. Priyadarsini, K.I., Khopde, S.M., Kumar, S.S., Mohan, H.: Free radical studies of ellagic acid, a natural phenolic antioxidant. J. Agric. Food Chem. 50, 2200–2206 (2002). https://doi.org/10.1021/jf011275g

    Article  Google Scholar 

  56. KilicYeşiloğluBayrak, I.Y.Y.: Spectroscopic studies on the antioxidant activity of ellagic acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 130, 447–452 (2014). https://doi.org/10.1016/j.saa.2014.04.052

    Article  Google Scholar 

  57. Adefegha, S.A., Oboh, G., Ejakpovi, I.I., Oyeleye, S.I.: Antioxidant and antidiabetic effects of gallic and protocatechuic acids: a structure–function perspective. Comp. Clin. Pathol. 24, 1579–1585 (2015). https://doi.org/10.1007/s00580-015-2119-7

    Article  Google Scholar 

  58. Ambigaipalan, P., de Camargo, A.C., Shahidi, F.: Phenolic compounds of pomegranate byproducts (outer skin, mesocarp, divider membrane) and their antioxidant activities. J. Agric. Food Chem. 64, 6584–6604 (2016). https://doi.org/10.1021/acs.jafc.6b02950

    Article  Google Scholar 

  59. Kam, A., Li, K.M., Razmovski-Naumovski, V., Nammi, S., Shi, J., Chan, K., Li, G.Q.: A Comparative study on the ınhibitory effects of different parts and chemical constituents of pomegranate on α-amylase and α-glucosidase. Phytother. Res. 27, 1614–1620 (2012). https://doi.org/10.1002/ptr.4913

    Article  Google Scholar 

  60. Golden, D.A., Eyles, M.J., Beuchat, L.R.: Influence of modified-atmosphere storage on the growth of uninjured and heat-injured Aeromonas hydrophila. Appl. Environ. Microbiol. 55, 3012–3015 (1989)

    Article  Google Scholar 

  61. Delgado-AdámezFernández-LeónVelardo-MicharetGonzález-Gómez, J.M.F.B.D.: In vitro assays of the antibacterial and antioxidant activity of aqueous leaf extracts from different Prunus salicina Lindl. Cultivars. Food Chem. Toxicol. 50, 2481–2486 (2012). https://doi.org/10.1016/j.fct.2012.02.024

    Article  Google Scholar 

  62. Martini, S., D’Addario, C., Colacevich, A., Focardi, S., Borghini, F., Santucci, A., Figura, N., Rossi, C.: Antimicrobial activity against Helicobacter pylori strains and antioxidant properties of blackberry leaves (Rubus ulmifolius) and isolated compounds. Int. J. Antimicrob. Agents. 34, 50–59 (2009). https://doi.org/10.1016/j.ijantimicag.2009.01.010

    Article  Google Scholar 

  63. Bueno-Costa, F.M., Zambiazi, R.C., Bohmer, B.W., Chaves, F.C., da Silva, W.P., Zanusso, J.T., Dutra, I.: Antibacterial and antioxidant activity of honeys from the state of Rio Grande do Sul, Brazil. LWT Food Sci. Technol. 65, 333–340 (2016). https://doi.org/10.1016/j.lwt.2015.08.018

    Article  Google Scholar 

  64. Granato, D., Santos, J.S., Escher, G.B., Ferreira, B.L., Maggio, R.M.: Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: a critical perspective. Trends Food Sci. Technol. 72, 83–90 (2018). https://doi.org/10.1016/j.tifs.2017.12.006

    Article  Google Scholar 

  65. Berrueta, L.A., Alonso-Salces, R.M., Héberger, K.: Supervised pattern recognition in food analysis. J. Chromatogr. 1158, 196–214 (2007). https://doi.org/10.1016/j.chroma.2007.05.024

    Article  Google Scholar 

  66. Dhull, S.B., Kaur, P., Purewal, S.S.: Phytochemical analysis, phenolic compounds, condensed tannin content and antioxidant potential in Marwa (Origanum majorana) seed extracts. Resour. Technol. 2, 168–174 (2016). https://doi.org/10.1016/j.reffit.2016.09.003

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Harran University Scientific Research Projects Unit (Project Number: HUBAP-19053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Karaaslan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsataf, S., Başyiğit, B. & Karaaslan, M. Multivariate Analyses of the Antioxidant, Antidiabetic, Antimicrobial Activity of Pomegranate Tissues with Respect to Pomegranate Juice. Waste Biomass Valor 12, 5909–5921 (2021). https://doi.org/10.1007/s12649-021-01427-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01427-9

Keywords

Navigation