Skip to main content

Advertisement

Log in

Improvement of Thermal Dehydration and Agronomic Properties of Products Obtained by Combining Sewage Sludge with Industrial Residues

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Sewage sludge (SS) formed in wastewater treatment plants can contain organic matter and nutrients in concentrations that are valuable for amending poor soil. This work aims to compare the performance of six residues not only as drying adjuvants of SS but also as improvers agents in agronomic properties of the final product. According to criteria in line with circular economy and industrial ecology, the selected adjuvants were weathered coal fly ash (CFA), bottom biomass ash (BBA), green liquor dregs (GLD), lime mud (LM), eggshell (ES), and rice husk (RH). The main physicochemical properties of these materials were determined. Then, small cylinders with and without 0.15 g adjuvant/g SSwet basis were shaped at room temperature and dried at 130 ºC in a moisture analyzer to evaluate the drying kinetics. The profiles were modeled, and the main parameters determined. Furthermore, several relevant parameters for agronomic applications of the final products were determined, such as pathogen contamination, acid neutralization capacity (ANC), and oxygen uptake rate (OUR). Adding BBA to SS (named as SS_BBA product) promoted the highest diffusion coefficient (2.55·10−7 m2/s) and drying rate (41.6 g H2O/kg min). On the other hand, SS_ES showed a positive impact in almost all agronomic parameters, with an ANC of 0.166 g CaCO3/g, OUR of 10.18 mmol O2/kg organic matter h, and germination index of 29.1%. In general, the results indicate that several residues can be used to improve not only sludge drying but also the final properties of the product for soil applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Epstein, E.: Chapter 3—plant nutrients. In: Land Application of Sewage Sludge and Biosolids, pp. 29–38. Taylor & Francis, Boca Raton (2003)

  2. Theregowda, R., González-Meijía, A., Garland, J., Ma, X.: Nutrient recovery from municipal wastewater for sustainable food production systems: an alternative to traditional fertilizers,  Environ. Eng. Sci. 36, 833–842 (2019). https://doi.org/10.1089/ees.2019.0053

  3. European Sustainable Phosphorus Plataform: Newsletter about nutrient stewardship—European Sustainable Phosphorus Platform (ESPP). https://phosphorusplatform.eu/platform/about-espp

  4. Fisher, R.M., Alvarez-gaitan, J.P., Stuetz, R.M., Fisher, R.M., Alvarez-gaitan, J.P., Review, R.M.S., Fisher, R.M., Alvarez-gaitan, J.P., Stuetz, R.M.: Review of the effects of wastewater biosolids stabilization processes on odor emissions stabilization processes on odor emissions. Crit. Rev. Environ. Sci. Technol. 49, 1515–1586 (2019). https://doi.org/10.1080/10643389.2019.1579620

    Article  Google Scholar 

  5. Langaas, S.: Microplastics (MP) in sewage sludge and agriculture, Personal communication (2018)

  6. European Comission: Ex-post evaluation of certain waste stream Directives, Bio Intelligence Service Final Report (2014)

  7. Gomes, L.A., Santos, A.F., Lopes, R.J.A., Góis, J.C., Quina, M.J.: Isothermal drying kinetics of sewage sludge using weathered coal fly ash as adjuvant for agronomic application. Environ. Technol. (2019). https://doi.org/10.1080/09593330.2019.1700311. (In press)

    Article  Google Scholar 

  8. Santos, A.F., Santos, C.P., Matos, A.M., Cardoso, O.: Effect of thermal drying and chemical treatments with wastes on microbiological contamination indicators in sewage sludge. Microorganisms 8, 376 (2020). https://doi.org/10.3390/microorganisms8030376

    Article  Google Scholar 

  9. Đurđević, D., Blecich, P., Jurić, Ž: Energy recovery from sewage sludge: the case study of Croatia. Energies 12, 1927 (2019). https://doi.org/10.3390/en12101927

    Article  Google Scholar 

  10. Uggetti, E., Ferrer, I., Llorens, E., García, J.: Sludge treatment wetlands: a review on the state of the art. Bioresour. Technol. 101, 2905–2912 (2010). https://doi.org/10.1016/j.biortech.2009.11.102

    Article  Google Scholar 

  11. Gomes, L.A., Santos, A.F., Pinheiro, C.T., Quina, M.J.: Screening of waste materials as adjuvants for drying sewage sludge based on environmental, technical and economic criteria. J. Clean. Prod. 259, 120927 (2020). https://doi.org/10.1016/j.jclepro.2020.120927

    Article  Google Scholar 

  12. Zhang, X.Y., Chen, M.Q., Huang, Y.W., Xue, F.: Isothermal hot air drying behavior of municipal sewage sludge briquettes coupled with lignite additive. Fuel 171, 108–115 (2016). https://doi.org/10.1016/j.fuel.2015.12.052

    Article  Google Scholar 

  13. Cai, Z., Ma, X., Qing, X., Yu, Z.: Drying kinetics and characteristics of sewage sludge/rice straw mixture. Dry. Technol. 3937, 1500–1509 (2015). https://doi.org/10.1080/07373937.2015.1021928

    Article  Google Scholar 

  14. Pehlivan, H., Ates, A., Ozdemir, M.: Experimental evaluation of drying characteristics of sewage sludge and hazelnut shell mixtures. Heat Mass Transf. 52, 2367–2379 (2016). https://doi.org/10.1007/s00231-015-1751-8

    Article  Google Scholar 

  15. Zhang, X., Chen, M., Huang, Y.: Isothermal drying kinetics of municipal sewage sludge coupled with additives and freeze–thaw pretreatment. J. Therm. Anal. Calorim. 128, 1195–1205 (2017). https://doi.org/10.1007/s10973-016-5983-8

    Article  Google Scholar 

  16. Wang, T., Xue, Y., Hao, R., Hou, H., Liu, J., Li, J.: Mechanism investigations into the effect of rice husk and wood sawdust conditioning on sewage sludge thermal drying. J. Environ. Manag. 239, 316–323 (2019). https://doi.org/10.1016/j.jenvman.2019.03.074

    Article  Google Scholar 

  17. Zhang, X., Kang, H., Zhang, Q., Hao, X., Han, X., Zhang, W.: The porous structure effects of skeleton builders in sustainable sludge dewatering process. J. Environ. Manag. 230, 14–20 (2019). https://doi.org/10.1016/j.jenvman.2018.09.049

    Article  Google Scholar 

  18. Quina, M.J., Soares, M.A.R., Quinta-Ferreira, R.: Applications of industrial eggshell as a valuable anthropogenic resource. Resour. Conserv. Recycl. 123, 176–186 (2017). https://doi.org/10.1016/j.resconrec.2016.09.027

    Article  Google Scholar 

  19. Quina, M.J., Pinheiro, C.T.: Inorganic waste generated in kraft pulp mills: the transition from landfill to industrial applications. Appl. Sci. 10, 2317 (2020). https://doi.org/10.3390/app10072317

    Article  Google Scholar 

  20. Mäkitalo, M., Maurice, C., Jia, Y., Öhlander, B.: Characterization of green liquor dregs, potentially useful for prevention of the formation of acid rock drainage. Minerals 4, 330–344 (2014). https://doi.org/10.3390/min4020330

    Article  Google Scholar 

  21. Gomes, L.A., Santos, A.F., Góis, J.C., Quina, M.J.: Thermal dehydration of urban biosolids with green liquor dregs from pulp and paper mill. J. Environ. Manag. 261, 109944 (2020). https://doi.org/10.1016/j.jenvman.2019.109944

    Article  Google Scholar 

  22. Bennamoun, L., Arlabosse, P., Léonard, A.: Review on fundamental aspect of application of drying process to wastewater sludge. Renew. Sustain. Energy Rev. 28, 29–43 (2013). https://doi.org/10.1016/j.rser.2013.07.043

    Article  Google Scholar 

  23. Srikiatden, J., Roberts, J.S.: Moisture transfer in solid food materials: a review of mechanisms, models, and measurements. Int. J. Food Prop. 10, 739–777 (2007). https://doi.org/10.1080/10942910601161672

    Article  Google Scholar 

  24. Gomes, L.A., Gabriel, N., Gando-Ferreira, L.M., Góis, J.C., Quina, M.J.: Analysis of potentially toxic metal constraints to apply sewage sludge in Portuguese agricultural soils. Environ. Sci. Pollut. Res. 26, 26000–26014 (2019). https://doi.org/10.1007/s11356-019-05796-6

    Article  Google Scholar 

  25. Gomes, L.A., Santos, A.F., Quina, M.J., Góis, J.C.: Impact of sewage sludge with eggshell on lepidium sativum l. Growth. In: Wastes: Solutions, Treatments and Opportunities III—Selected Papers from the 5th International Conference Wastes: Solutions, Treatments and Opportunities, 2019 (2020)

  26. Alvarenga, P., Farto, M., Mourinha, C., Palma, P.: Beneficial use of dewatered and composted sewage sludge as soil amendments: behaviour of metals in soils and their uptake by plants. Waste Biomass Valoriz. 7, 1189–1201 (2016). https://doi.org/10.1007/s12649-016-9519-z

    Article  Google Scholar 

  27. Deng, W., Li, X., Yan, J., Wang, F., Chi, Y., Cen, K.: Moisture distribution in sludges based on different testing methods. J. Environ. Sci. 23, 875–880 (2011). https://doi.org/10.1016/S1001-0742(10)60518-9

    Article  Google Scholar 

  28. European Commission: Disposal and recycling routes for sewage sludge. Part 2—Regulatory report. Luxembourg (2001)

  29. Jones Jr., J.B.: Plant nutrition and soil fertility manual, 2nd edn. CRC Press (2012)

  30. Lasaridi, K.E., Stentiford, E.I.: A simple respirometric technique for assessing compost stability. Water Res. 32, 3717–3723 (1998). https://doi.org/10.1016/S0043-1354(98)00143-2

    Article  Google Scholar 

  31. Evangelou, A., Komilis, D.: Liquid-phase respiration activity assays to assess organic waste stability: a comparison of two tests. Sustain 10, 1441 (2018). https://doi.org/10.3390/su10051441

    Article  Google Scholar 

  32. Vanhoof, C., Tirez, K.: Influence of the incubation temperature on the biological activity of soil improvers using the respirometric method, pp. 1–34, Report to Public Waste Agency of Flanders (2017)

  33. Kader, M.A.: A comparison of seed germination calculation formulae and the associated interpretation of resulting data. J. Proc. R. Soc. New South Wales 138, 65–75 (2005)

    Google Scholar 

  34. Alvarenga, P., Palma, P., Gonçalves, A.P., Fernandes, R.M., Cunha-Queda, A.C., Duarte, E., Vallini, G.: Evaluation of chemical and ecotoxicological characteristics of biodegradable organic residues for application to agricultural land. Environ. Int. 33, 505–513 (2007). https://doi.org/10.1016/j.envint.2006.11.006

    Article  Google Scholar 

  35. Latare, A.M., Kumar, O., Singh, S.K., Gupta, A.: Direct and residual effect of sewage sludge on yield, heavy metals content and soil fertility under rice-wheat system. Ecol. Eng. 69, 17–24 (2014). https://doi.org/10.1016/j.ecoleng.2014.03.066

    Article  Google Scholar 

  36. Shu, W., Price, G.W., Sharifi, M., Cade-Menun, B.J.: Impact of annual and single application of alkaline treated biosolids on soil extractable phosphorus and total phosphorus. Agric. Ecosyst. Environ. 219, 111–118 (2016). https://doi.org/10.1016/j.agee.2015.12.009

    Article  Google Scholar 

Download references

Funding

This work was developed under the project ‘Dry2Value–Estudo e desenvolvimento de um Sistema de secagem para valorização de lamas. Project consortium with HRV e BioSmart Soluções Ambientais. POCI-01-0247-FEDER-033662. Funded by Fundo Europeu de Desenvolvimento Regional (FEDER)—Programa Operacional Competitividade e Internacionalização.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreia F. Santos.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, A.F., Gomes, L.A., Góis, J.C. et al. Improvement of Thermal Dehydration and Agronomic Properties of Products Obtained by Combining Sewage Sludge with Industrial Residues. Waste Biomass Valor 12, 5087–5097 (2021). https://doi.org/10.1007/s12649-021-01371-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01371-8

Keywords

Navigation