Skip to main content
Log in

Hydrolysis of Shrimp Cooking Juice Waste for the Production of Antioxidant Peptides and Proteases by Enterococcus faecalis DM19

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The current increase in the number of wastes produced by the shrimp industry has generated the need to find new methods to valorize such materials as they can be an important source of bioactive compounds while preserving the environment. In this study, proteins from Pacific white shrimp (Litopenaeus vannamei [Penaeus vannamei]) cooking juice (SCJP) were tested as a fermentation substrate for growth and protease production by the proteolytic strain Enterococcus faecalis DM19. This microorganism grew well and exhibited protease activity when cultivated in a medium containing only SCJP, indicating that the strain can obtain its carbon and nitrogen source requirements directly from shrimp waste protein. Also, the crude protease extract from Enterococcus faecalis DM19 was used to hydrolyze SCJP, and the antioxidant properties of the protein hydrolysate (SCJH) were investigated. The peptides and amino acids formed during the hydrolysis of shrimp waste protein are likely to be responsible for the antioxidant activity observed in this sample. The increased antioxidant activity of SCJH could be useful for the preservation of several products, especially in those cases in which oxidation processes are a limiting factor determining shelf-life.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cros, S., Lignot, B., Jaouen, P., Bourseau, P.: Technical and economical evaluation of an integrated membrane process capable both to produce an aroma concentrate and to reject clean water from shrimp cooking juices. J Food Eng. 77(3), 697–707 (2006)

    Google Scholar 

  2. Pérez-Santín, E., Calvo, M., López-Caballero, M., Montero, P., Gómez-Guillén, M.: Compositional properties and bioactive potential of waste material from shrimp cooking juice. LWT Food Sci. Technol. 54(1), 87–94 (2013)

    Google Scholar 

  3. Cai, L., Li, D., Dong, Z., Cao, A., Lin, H., Li, J.: Change regularity of the characteristics of Maillard reaction products derived from xylose and Chinese shrimp waste hydrolysates. LWT Food Sci. Technol. 65, 908–916 (2016)

    Google Scholar 

  4. Pihlanto, A., Korhonen, H.: Bioactive peptides from fermented foods and health promotion. In: Holzapfel, W. (ed.) Advances in fermented foods and beverages, pp. 39–74. Woodhead publishing Ltd., Cambridge, UK (2015)

    Google Scholar 

  5. Martone, C.B., Borla, O.P., Sánchez, J.J.: Fishery by-product as a nutrient source for bacteria and archaea growth media. Bioresour. Technol. 96(3), 383–387 (2005)

    Google Scholar 

  6. Aanand, S., Divya, M., Deepak, T., Padmavathi, P., Manimekalai, D.: Review on seafood processing plant wastewater bioremediation–A potential tool for waste management. IJAR 3(7), 01–04 (2017)

    Google Scholar 

  7. Martínez-Alvarez, O., Batista, I., Ramos, C., Montero, P.: Enhancement of ACE and prolyl oligopeptidase inhibitory potency of protein hydrolysates from sardine and tuna by-products by simulated gastrointestinal digestion. Food Funct. 7(4), 2066–2073 (2016)

    Google Scholar 

  8. Aranday-García, R., Guerrero, A.R., Ifuku, S., Shirai, K.: Successive inoculation of Lactobacillus brevis and Rhizopus oligosporus on shrimp wastes for recovery of chitin and added-value products. Process Biochem. 58, 17–24 (2017)

    Google Scholar 

  9. Martínez-Álvarez, O., López-Caballero, M., Gómez-Guillén, M., Montero, P.: Fermented seafood products and health. In: Frías, J., Martínez Villaluenga, C., Peñas, E. (eds.) Fermented foods in health and disease prevention, pp. 177–202. Academic Press, NY (2017)

    Google Scholar 

  10. Franz, C.M., Huch, M., Abriouel, H., Holzapfel, W., Galvez, A.: Enterococci as probiotics and their implications in food safety. Int. J. Food Microbiol. 151(2), 125–140 (2011)

    Google Scholar 

  11. Franz, C.M.A.P., Muscholl-Silberhorn, A.B., Yousif, N.M.K., Vancanneyt, M., Swings, J., Holzapfel, W.H.: Incidence of virulence factors and antibiotic resistance among enterococci isolated from food. Appl. Environ. Microb. 67, 4385–4389 (2001)

    Google Scholar 

  12. Giraffa, G., Carminati, D., Neviani, E.: Enterococci isolated from dairy products: a review of risks and potential technological use. J. Food Protect. 60, 732–738 (1997)

    Google Scholar 

  13. Djellouli, M., Martínez-Álvarez, O., Arancibia, M.Y., Florez-Cuadrado, D., Ugarte-Ruíz, M., Domínguez, L., Zadi-Karam, H., Karam, N., Roudj, S., López-Caballero, M.E.: Effect of seafood peptones on biomass and metabolic activity by Enterococcus faecalis DM19. LWT Food Sci. Technol. 81, 94–100 (2017)

    Google Scholar 

  14. Park, S.Y., Gibbs, B.F., Lee, B.H.: Effects of crude enzyme of Lactobacillus casei LLG on water-soluble peptides of enzyme-modified cheese. Food Res. Int. 28(1), 43–49 (1995)

    Google Scholar 

  15. Desmazeaud, M., Vassal, L.: Activité protéolytique intracellulaire de streptocoques lactiques mésophiles. Rôle au cours de l'affinage des fromages. Le lait 59(587), 327–344 (1979)

    Google Scholar 

  16. Adler-Nissen, J., Olsen, H.S.: The influence of peptide chain length on taste and functional properties of enzymatically modified soy protein. J. Chem. Technol. Biotechnol. 92, 125–146 (1979)

    Google Scholar 

  17. Lajmi, K., Gómez Estaca, J., Hammami, M., Martínez-Alvarez, O.: Upgrading collagenous smooth hound by-products: Effect of hydrolysis conditions, in vitro gastrointestinal digestion and encapsulation on bioactive properties. Food Biosci. 28, 99–108 (2019)

    Google Scholar 

  18. Djellouli, M., López-Caballero, M.E., Arancibia, M.Y., Karam, N., Martínez-Alvarez, O.: Antioxidant and antimicrobial enhancement by reaction of protein hydrolysates derived from shrimp by-products with glucosamine. Waste Biomass Valoriz. 11(6), 2491–2495 (2020)

    Google Scholar 

  19. Dinis, T.C., Madeira, V.M., Almeida, L.M.: Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 315(1), 161–169 (1994)

    Google Scholar 

  20. Mechri, S., Bouacem, K., Jabeur, F., Mohamed, S., Addou, N.A., Dab, A., Bouraoui, A., Bouanane-Darenfed, A., Bejar, S., Hacène, H.: Purification and biochemical characterization of a novel thermostable and halotolerant subtilisin SAPN, a serine protease from Melghiribacillus thermohalophilus Nari2A T for chitin extraction from crab and shrimp shell by-products. Extremophiles 23(5), 529–547 (2019)

    Google Scholar 

  21. Wang, S.-L., Chang, T.-J., Liang, T.-W.: Conversion and degradation of shellfish wastes by Serratia sp. TKU016 fermentation for the production of enzymes and bioactive materials. Biodegradation 21(3), 321–333 (2010)

    Google Scholar 

  22. Wang, S.-L., Yeh, P.-Y.: Production of a surfactant-and solvent-stable alkaliphilic protease by bioconversion of shrimp shell wastes fermented by Bacillus subtilis TKU007. Process Biochem. 41(7), 1545–1552 (2006)

    Google Scholar 

  23. Mechri, S., Sellem, I., Bouacem, K., Jabeur, F., Laribi-Habchi, H., Mellouli, L., Hacène, H., Bouanane-Darenfed, A., Jaouadi, B.: A biological clean processing approach for the valorization of speckled shrimp Metapenaeus monoceros by-product as a source of bioactive compounds. Environ. Sci. Pollut. Res. 1-14 (2020).

  24. Sila, A., Martínez-Alvarez, O., Haddar, A., Gómez-Guillén, M.C., Nasri, M., Montero, M.P., Bougatef, A.: Recovery, viscoelastic and functional properties of Barbel skin gelatine: Investigation of anti-DPP-IV and anti-prolyl endopeptidase activities of generated gelatine polypeptides. Food Chem. 168, 478–486 (2015)

    Google Scholar 

  25. Martínez-Alvarez, O., Chamorro, S., Brenes, A.: Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding: a review. Food Res. Int. 73, 204–212 (2015)

    Google Scholar 

  26. Gómez-Guillén, C., López Caballero, M., Alemán, A., López de Lacey, A., Giménez, B., Montero García, P.: Antioxidant and antimicrobial peptide fractions from squid and tuna skin gelatin. In: Le Bihan, E., Koueta, N. (eds.) Sea by-products as a real material: New ways of application, pp. 89-115. Transworld Research Network, Kerala (2010).

  27. Ruttanapornvareesakul, Y., Ikeda, M., Hara, K., Osatomi, K., Osako, K., Kongpun, O., Nozaki, Y.: Concentration-dependent suppressive effect of shrimp head protein hydrolysate on dehydration-induced denaturation of lizardfish myofibrils. Bioresour. Technol. 97(5), 762–769 (2006)

    Google Scholar 

  28. Gildberg, A., Stenberg, E.: A new process for advanced utilisation of shrimp waste. Process Biochem. 36(8–9), 809–812 (2001)

    Google Scholar 

  29. Mendis, E., Rajapakse, N., Byun, H.-G., Kim, S.-K.: Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sci. 77(17), 2166–2178 (2005)

    Google Scholar 

  30. Chen, H.-M., Muramoto, K., Yamauchi, F., Nokihara, K.: Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J. Agric. Food. Chem. 44(9), 2619–2623 (1996)

    Google Scholar 

  31. Kim, S.-K., Mendis, E.: Bioactive compounds from marine processing byproducts–a review. Food Res. Int. 39(4), 383–393 (2006)

    Google Scholar 

  32. Kim, S.-K., Wijesekara, I.: Development and biological activities of marine-derived bioactive peptides: a review. J. Funct. Foods 2(1), 1–9 (2010)

    Google Scholar 

  33. Yang, J.-I., Ho, H.-Y., Chu, Y.-J., Chow, C.-J.: Characteristic and antioxidant activity of retorted gelatin hydrolysates from cobia (Rachycentron canadum) skin. Food Chem. 110(1), 128–136 (2008)

    Google Scholar 

  34. Phanturat, P., Benjakul, S., Visessanguan, W., Roytrakul, S.: Use of pyloric caeca extract from bigeye snapper (Priacanthus macracanthus) for the production of gelatin hydrolysate with antioxidative activity. LWT Food Sci. Technol. 43(1), 86–97 (2010)

    Google Scholar 

  35. Wu, H.-C., Chen, H.-M., Shiau, C.-Y.: Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int. 36(9–10), 949–957 (2003)

    Google Scholar 

  36. Je, J.-Y., Park, P.-J., Kim, S.-K.: Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Res. Int. 38(1), 45–50 (2005)

    Google Scholar 

  37. Balti, R., Bougatef, A., Sila, A., Guillochon, D., Dhulster, P., Nedjar-Arroume, N.: Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats. Food Chem. 170, 519–525 (2015)

    Google Scholar 

  38. Jo, H.-Y., Jung, W.-K., Kim, S.-K.: Purification and characterization of a novel anticoagulant peptide from marine echiuroid worm Urechis unicinctus. Process Biochem. 43(2), 179–184 (2008)

    Google Scholar 

  39. Liu, Z., Dong, S., Xu, J., Zeng, M., Song, H., Zhao, Y.: Production of cysteine-rich antimicrobial peptide by digestion of oyster (Crassostrea gigas) with alcalase and bromelin. Food Control 19(3), 231–235 (2008)

    Google Scholar 

  40. Theodore, A.E., Raghavan, S., Kristinsson, H.G.: Antioxidative activity of protein hydrolysates prepared from alkaline-aided channel catfish protein isolates. J. Agric. Food. Chem. 56(16), 7459–7466 (2008)

    Google Scholar 

  41. Alemán, A., Giménez, B., Montero, P., Gómez-Guillén, M.: Antioxidant activity of several marine skin gelatins. LWT Food Sci. Technol. 44(2), 407–413 (2011)

    Google Scholar 

  42. Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guillochon, D., Nasri, M.: Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chem. 118(3), 559–565 (2010)

    Google Scholar 

  43. Sila, A., Sayari, N., Balti, R., Martinez-Alvarez, O., Nedjar-Arroume, N., Moncef, N., Bougatef, A.: Biochemical and antioxidant properties of peptidic fraction of carotenoproteins generated from shrimp by-products by enzymatic hydrolysis. Food Chem. 148, 445–452 (2014)

    Google Scholar 

  44. Nasri, R., Jridi, M., Lassoued, I., Jemil, I., Salem, R.B.S.-B., Nasri, M., Karra-Châabouni, M.: The influence of the extent of enzymatic hydrolysis on antioxidative properties and ACE-inhibitory activities of protein hydrolysates from goby (Zosterisessor ophiocephalus) muscle. Appl. Biochem. Biotechol. 173(5), 1121–1134 (2014)

    Google Scholar 

  45. Himaya, S., Ryu, B., Ngo, D.-H., Kim, S.-K.: Peptide isolated from Japanese flounder skin gelatin protects against cellular oxidative damage. J. Agric. Food Chem. 60(36), 9112–9119 (2012)

    Google Scholar 

  46. Jao, C.-L., Ko, W.-C.: 1, 1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging by protein hydrolyzates from tuna cooking juice. Fish Sci. 68(2), 430–435 (2002)

    Google Scholar 

  47. Vilailak, K., Soottawat, B., Duangporn, K., Fereidoon, S.: Antioxidative activity and functional properties of protein hydrolysate of yellow Stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem. 102(4), 1317–1327 (2007)

    Google Scholar 

  48. Ketnawa, S., Martínez-Alvarez, O., Benjakul, S., Rawdkuen, S.: Gelatin hydrolysates from farmed Giant catfish skin using alkaline proteases and its antioxidative function of simulated gastro-intestinal digestion. Food Chem. 192, 34–42 (2016)

    Google Scholar 

  49. Sun, J., Mao, X.: An environmental friendly process for Antarctic krill (Euphausia superba) utilization using fermentation technology. J. Clean. Prod. 127, 618–623 (2016)

    Google Scholar 

  50. Ghorbel-Bellaaj, O., Younes, I., Maâlej, H., Hajji, S., Nasri, M.: Chitin extraction from shrimp shell waste using Bacillus bacteria. Int. J. Biol. Macromol. 51(5), 1196–1201 (2012)

    Google Scholar 

  51. Nasri, R., Younes, I., Jridi, M., Trigui, M., Bougatef, A., Nedjar-Arroume, N., Dhulster, P., Nasri, M., Karra-Châabouni, M.: ACE inhibitory and antioxidative activities of Goby (Zosterissessor ophiocephalus) fish protein hydrolysates: effect on meat lipid oxidation. Food Res. Int. 54(1), 552–561 (2013)

    Google Scholar 

  52. Chen, H.-M., Muramoto, K., Yamauchi, F., Fujimoto, K., Nokihara, K.: Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J. Agric. Food. Chem. 46(1), 49–53 (1998)

    Google Scholar 

  53. Liñán-Cabello, M.A., Paniagua-Michel, J., Hopkins, P.M.: Bioactive roles of carotenoids and retinoids in crustaceans. Aquac. Nutr. 8(4), 299–309 (2002)

    Google Scholar 

  54. Wijesekara, I., Kim, S.-K.: Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: Prospects in the pharmaceutical industry. Mar. Drugs 8(4), 1080–1093 (2010)

    Google Scholar 

  55. Alashi, A.M., Blanchard, C.L., Mailer, R.J., Agboola, S.O., Mawson, A.J., He, R., Malomo, S.A., Girgih, A.T., Aluko, R.E.: Blood pressure lowering effects of Australian canola protein hydrolysates in spontaneously hypertensive rats. Food Res. Int. 55, 281–287 (2014)

    Google Scholar 

  56. Aluko, R.E., Girgih, A.T., He, R., Malomo, S., Li, H., Offengenden, M., Wu, J.: Structural and functional characterization of yellow field pea seed (Pisum sativum L.) protein-derived antihypertensive peptides. Food Res. Int. 77, 10–16 (2015)

    Google Scholar 

Download references

Acknowledgements

This research was financed by the Spanish Ministry of Economy and Competitiveness (Project AGL2014-52825-R) and cofounded with European Union ERDF funds (European Regional Development Fund). Author M. Djellouli was funded by The National Centre of Biotechnology Research (CNRBt) of Algeria and the ENP (Exceptional National Program) Scholarship provided by the Ministry of Higher Education and Scientific Research of Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Martínez-Álvarez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

(ICTAN-CSIC) has implemented and maintains a Quality Management System which fulfils the requirements of the ISO standard 9001:2015

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djellouli, M., López-Caballero, M.E., Roudj, S. et al. Hydrolysis of Shrimp Cooking Juice Waste for the Production of Antioxidant Peptides and Proteases by Enterococcus faecalis DM19. Waste Biomass Valor 12, 3741–3752 (2021). https://doi.org/10.1007/s12649-020-01263-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01263-3

Keywords

Navigation