Skip to main content
Log in

Obtaining Biogenic Silica from Sugarcane Bagasse and Leaf Ash

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Besides mineral sources, silica can be found in plants, particularly in the epidermis, since during their growth plants absorb the mono-silicic acid present in the soil, storing it as a natural form of protection, insect pest control and transpiration regulator. Among the plants that present high levels of silica in their ashes, we can highlight sugarcane, with Brazil being the largest producer of sugarcane derived (sugar and bioethanol) in the world, accounting 615 million tons per year. Thus, the increasing of the international demand encourages an increase of the availability of sugarcane wastes, pushing its use for the generation of electric power, as for other purposes enabling a sustainable development. In this work, high purity silica nanoparticles (up to 95%) with predominantly amorphous microstructure were obtained after thermal (500 to 700 °C) and chemical treatments (1 molar hydrochloric acid solution, 10% volume) of sugarcane bagasse and leaves ashes. The obtained results indicate the possibility of using this silica in ceramics, glasses, refractory materials and construction applications, as well as in the cosmetic and pharmaceutical industry, molecular sieves and mesoporous membranes. The silica obtained in this research also proved to be suitable for obtaining porous silicon (using magnesiothermic reduction), where the experimental procedure employed is described elsewhere.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. During experimental period, the authors opted not to characterize the BET for ashes obtained with Rout B due to low yield of this process, allied to the high content of liquid effluents generated during the leaching/washing/filtering process. Submission and review period occurred during the COVID crisis and due to the interruption of activities at university where this research was developed, it was not possible to obtain the sample amount needed to perform the specific area characterization.

References

  1. Segadães, A.M.: Refractários. Universidade de Aveiro, Aveiro (1997)

    Google Scholar 

  2. Kingery, W.D., Bowen, H.K., Uhiman, D.R.: Introduction to Ceramics, 2nd edn. Wiley, New York (1976)

    Google Scholar 

  3. Heaney, P.J., Prewitt, C.T., Gibbs, G.V.: Silica: Physical Behavior, Geochemistry, and Materials Applications. Mineralogical Society of America, New Jersey (1994)

    Book  Google Scholar 

  4. Grimshaw, R.W.: The Chemistry and Physics of Clays, 4th edn. Ernest Benn Limited, London (1971)

    Google Scholar 

  5. Chandrasekhar, S., Satyanarayana, K.G., Pramada, P.N., Raghavan, P.: Review Processing, properties and applications of reactive silica from rice husk—an overview. J. Mater. Sci. (2003). https://doi.org/10.1023/A:1025157114800

    Article  Google Scholar 

  6. Feng, J., Yamaji, N., Mitani-Ueno, N.: Transport of silicon from roots to panicles in plants. Proc. Jpn. Acad Ser. B (2011). https://doi.org/10.2183/pjab.87.377

    Article  Google Scholar 

  7. Iler, R.K.: The Chemistry of Silica—Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. Wiley, New York (1976)

    Google Scholar 

  8. Rodrigues, L.C., Santana, M.A.E.: Metodologia para determinação do teor de sílica em materiais lignocelulósicos via espectrometria no Ultravioleta-visível. Floresta e Ambiente 12(1), 57–62 (2005)

    Google Scholar 

  9. Currie, H.A., Perry, C.C.: Silica in plants: biological, biochemical and chemical studies. Ann. Bot. (2007). https://doi.org/10.1093/aob/mcm247

    Article  Google Scholar 

  10. Della, V.P., Hotza, D., Junkes, J.A., Oliveira, A.P.N.: Estudo comparativo entre sílica obtida por lixívia ácida da casca de arroz e sílica obtida por tratamento térmico da cinza de casca de arroz. Química Nova (2006). https://doi.org/10.1590/S0100-40422006000600005

    Article  Google Scholar 

  11. Della, V.P., Kühn, I., Hotza, D.: Caracterização de cinza de casca de arroz para uso como materia—prima na fabricação de refratários de sílica. Química Nova (2001). https://doi.org/10.1590/S0100-40422001000600013

    Article  Google Scholar 

  12. Sun, L., Gong, K.: Silicon-based materials from rice husk and their applications. Ind. Eng. Chem. Res. (2001). https://doi.org/10.1021/ie010284b

    Article  Google Scholar 

  13. Real, C., Alcalá, M.D., Criado, J.M.: Preparation of silica from rice husks. J. Am. Ceram. Soc. (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08931.x

    Article  Google Scholar 

  14. Shen, Y.: Rice husk silica derived nanomaterials for sustainable applications. Renew. Sustain. Energy Rev. (2017). https://doi.org/10.1016/j.rser.2017.05.115

    Article  Google Scholar 

  15. Falk, G., Shinhe, G.P., Teixeira, L.B., Moraes, E.G., Oliveira, A.P.N.: Synthesis of silica nanoparticles from sugarcane bagasse ash and nano-silicon via magnesiothermic reactions. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.07.157

    Article  Google Scholar 

  16. Bergna, H.E., Roberts, W.O.: Colloidal Silica: Fundamentals and Applications. Taylor & Francis, Oxfordshire (2006)

    Google Scholar 

  17. Slowing, I.I., Trewyn, B.G., Giri, S., Lin, V.S.-Y.: Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater. (2007). https://doi.org/10.1002/adfm.200601191

    Article  Google Scholar 

  18. Davis, M.E.: Ordered porous materials for emerging applications. Nature (2002). https://doi.org/10.1038/nature00785

    Article  Google Scholar 

  19. Entwistle, J., Rennie, A., Patwardhan, S.: A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond. J. Mater. Chem A (2018). https://doi.org/10.1039/C8TA06370B

    Article  Google Scholar 

  20. Liu, C., Cheng, Y.-B., Ge, Z.: Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chem Soc. Rev. (2020). https://doi.org/10.1039/C9CS00711C

    Article  Google Scholar 

  21. Xing, A., Tian, S., Tang, H., Losic, D., Bao, Z.: Mesoporous silicon engineered by reduction of biossílica from rice husk as a high-performance anode for lithium-ion batteries. RSC Adv. (2013). https://doi.org/10.1039/C3RA41889H

    Article  Google Scholar 

  22. Pereira, P.H., Voorwald, H.C., Cioffi, M.O., Pereira, M.L.D.S.: Preparação e caracterização de materiais híbridos celulose/NbOPO4·nH2O a partir de celulose branqueada de bagaço de cana-de-açúcar. Polímeros (2012). https://doi.org/10.1590/S0104-14282012005000002

    Article  Google Scholar 

  23. Blond, J.S.L., Williamson, B.J., Horwell, C.J., Monro, A.K., Kirk, C.A., Oppenheimer, C.: Production of potentially hazardous respirable silica airborne particulate from the burning of sugarcane. Atmos. Environ. (2008). https://doi.org/10.1016/j.atmosenv.2008.03.018

    Article  Google Scholar 

  24. Liu, N., Huo, K., Mcdowell, M.T., Zhao, J., Cui, Y.: Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Sci. Rep. (2013). https://doi.org/10.1038/srep01919

    Article  Google Scholar 

  25. CONAB—Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira. Cana-de-açúcar. V.5—Safra 2018/2019 N.3—Terceiro levantamento. www.conab.gov.br (accessed in February 2019)

  26. Macedo, I.C.: A energia da cana-de-açúcar—Doze estudos sobre a agroindústria da cana-de-açúcar no Brasil e sua sustentabilidade. 2a Ed. Unica—União da Agroindústria Canavieira do Estado de São Paulo, São Paulo (2005)

  27. Leal, M.R.L.V., Walter, A.S., Seabra, J.E.A.: Sugarcane as an energy source. Biomass Convers. Biorefinery (2013). https://doi.org/10.1007/s13399-012-0055-1

    Article  Google Scholar 

  28. Anaeel—Agencia Nacional De Energia Elétrica. Biomassa. www.aneel.gov.br. (accessed in October 2017)

  29. ASTM E871-82, 2006. Standard test method moisture analysis of particulate wood fuels, ASTM International, West Conshohocken, PA, 2012, www.astm.org (accessed in May 2016)

  30. ASTM E 872-82, 2006. Standard test method for volatile matter in the analysis of particulate wood fuels, ASTM International, West Conshohocken, PA, 2012, www.astm.org (accessed in May 2016)

  31. ASTM. E 1755-01, 2007. Standard test method for ash in biomass, ASTM International, West Conshohocken, PA, 2012, www.astm.org (accessed in May 2016)

  32. ASTM E 1756-08, 2008. Standard test method for determination of total solids in biomass, ASTM International, West Conshohocken, PA, 2012, www.astm.org (accessed in May 2016)

  33. García, R., Pizarro, C., Lavín, A.G., Bueno, J.L.: Characterization of Spanish biomass waste for energy use. Bioresource Technol. (2012). https://doi.org/10.1016/j.biortech.2011.10.004

    Article  Google Scholar 

  34. Barreto, E.J.F., Rendeiro, G., Nogueira, M.: Combustão e gasificação de biomassa sólida. Ministério de Minas e Energia, Brasília (2008)

    Google Scholar 

  35. Basu, P.: Biomass gasification and pyrolysis: practical design and theory. Academic Press, Cambridge (2010)

    Google Scholar 

  36. Peces, M., Astals, S., Mata-Alvarez, J.: Assessing total and volatile solids in municipal solid waste samples. Environ. Technol. (2014). https://doi.org/10.1080/09593330.2014.929182

    Article  Google Scholar 

  37. Moraes, E.G., Bigi, M., Stochero, N.P., Arcaro, S., Siligardi, C., Oliveira, A.P.N.: Vitrocrystalline foams produced with EPS as pore former: processing and characterization. Process Saf. Environ. Protect. (2019). https://doi.org/10.1016/j.psep.2018.10.007

    Article  Google Scholar 

  38. Segal, L.G.J.M.A., Creely, J.J., Martin, J.R., Conrad, C.M.: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. (1959). https://doi.org/10.1177/004051755902901003

  39. Nielsen, M., Fisk, M.R.: Data report: specific surface area and physical properties of subsurface basalt samples from east flank of Juan de Fuca Ridge. Proc. Integr. Ocean Drill. Program (2008). https://doi.org/10.2204/iodp.proc.301.205.2008

    Article  Google Scholar 

  40. ASTM C1069-09, 2014. Standard test method for specific surface area of alumina or quartz by nitrogen adsorption, ASTM International, West Conshohocken, PA, 2012, www.astm.org. (accessed in May 2016)

  41. Cordeiro, G.C., Vieira, A.P., Lopes, E.S.: Study on the pozzolanic activity of sugar cane straw ash produced using different pretreatments. J. Química Nova (2017). https://doi.org/10.21577/0100-4042.20170002

  42. Morais, L.C., Maia, A.A.D., Guandique, M.E.G., Rosa, A.H.: Pyrolysis and combustion of sugarcane bagasse. J. Therm. Anal. Calorim. (2017). https://doi.org/10.1007/s10973-017-6329-x

    Article  Google Scholar 

  43. Mothé, C.G., De Miranda, I.C.: Characterization of sugarcane and coconut fibers by thermal analysis and FTIR. J. Therm. Anal. Calorim. (2009). https://doi.org/10.1007/s10973-009-0346-3

    Article  Google Scholar 

  44. Yang, H., Yan, R., Chen, H., Ho Lee, D., Zheng, C.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel (2007). https://doi.org/10.1016/j.fuel.2006.12.013

    Article  Google Scholar 

  45. Souza, B.S., Moreira, A.P.D., Teixeira, A.M.R.F.: TG-FTIR coupling to monitor the pyrolysis products from agricultural residues. J. Therm. Anal. Calorim. (2009). https://doi.org/10.1007/s10973-009-0367-y

    Article  Google Scholar 

  46. Santos, M.L., Lima, O.J., Nassar, E.J., Ciuffi, K.J., Calefi, P.S.: Estudo das condições de estocagem do bagaço de cana-de-açúcar por análise térmica. Química Nova (2011). https://doi.org/10.1590/S0100-40422011000300024

    Article  Google Scholar 

  47. Thygesen, A., Oddershede, J., Lilholt, H., Thomsen, A.B., Ståhl, K.: On the determination of crystallinity and cellulose content in plant fibres. Cellulose (2005). https://doi.org/10.1007/s10570-005-9001-8

    Article  Google Scholar 

  48. Tsuchida, J.E., Rezende, C.A., Oliveira-Silva, R., Lima, M.A., Deurydice, M.N., Polikarpov, I., Banagamba, T.J.: Nuclear magnetic resonance investigation of water accessibility in cellulose of pretreated sugarcane bagasse. Biotechnol. Biofuels (2014). https://doi.org/10.1186/s13068-014-0127-5

    Article  Google Scholar 

  49. Souza, A.P., Leite, D.C.C., Pattathil, S., Hahn, M.G., Buckeridge. M.S.: Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. Energy Res. (2013). https://doi.org/10.1007/s12155-012-9268-1

  50. Schimidt, M.A., Balsanelli, E., Faoro, H., Cruz, L.M., Wassem, R., Baura, V.A., Weiss, V., Yates, M.G., Madeira, H.M.F., Pereira-Ferrari, L., Fungaro, M.H.P., Paula, F.M., Pereira, L.F.P., Vieira, L.G.E., Olivares, F.L., Pedrosa, F.O., Souza, E.M., Monteiro, R.A.: The type III secretion system is necessary for the development of a pathogenic and endophytic interaction between Herbaspirillum rubrisubalbicans and Poaceae. BMC Microbiol. (2012). https://doi.org/10.1186/1471-2180-12-98

    Article  Google Scholar 

  51. Teixeira, S.R., Souza, A.E., Peña, A.F.V., Lima, R.G., Miguel, A.G.: Use of charcoal and partially pirolysed biomaterial in fly ash to produce briquettes: sugarcane bagasse. Altern. Fuel (2011). https://doi.org/10.5772/20505

    Article  Google Scholar 

  52. James, J., Pandian, K.: A short review on the valorisation of sugarcane bagasse ash in the manufacture of stabilized/sintered earth blocks and tiles. Adv. Mater. Sci. Eng. (2017). https://doi.org/10.1155/2017/1706893

    Article  Google Scholar 

  53. Cordeiro, G.C., Toledo-Filho, R.D., Faibain, E.M.R.: Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Construct. Build. Mater. (2009). https://doi.org/10.1016/j.conbuildmat.2009.02.013

    Article  Google Scholar 

  54. Morales, E.V., Villar-Cociña, E., Frías, M., Santos, S.F., Savastano, H.: Effects of calcining conditions on the microstructure of sugar cane waste ashes (SCWA): influence in the pozzolanic activation. Cem. Concr. Compos. (2009). https://doi.org/10.1016/j.cemconcomp.2008.10.004

    Article  Google Scholar 

  55. Souza, A.E., Teixeira, S.R., Santos, G.T.A., Costa, F.B., Longo, E.: Reuse of sugarcane bagasse ash (SCBA) to produce ceramic materials. J. Environ. Manage. (2011). https://doi.org/10.1016/j.jenvman.2011.06.020

    Article  Google Scholar 

  56. Costa, J.A.S., Paranhos, C.M.: Systematic evaluation of amorphous silica production from rice husk ashes. J. Clean. Prod. (2018). https://doi.org/10.1016/j.jclepro.2018.05.028

    Article  Google Scholar 

  57. Frías, M., Villar, E., Savastano, H.: Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture. Cem. Concr. Compos. (2011). https://doi.org/10.1016/j.cemconcomp.2011.02.003

    Article  Google Scholar 

  58. Arumugam, A., Ponnusami, V.: Modified SBA-15 synthesized using sugarcane leaf ash for nickel adsorption. Indian J. Chem. Technol. 20(2), 101–105 (2013)

    Google Scholar 

  59. Guilherme, A.A., Dantas, P.V.F., Santos, E.S., Fernandes, F.A.N., Macedo, G.R.: Evaluation of composition, characterization and enzymatic hydrolysis of pretreated sugar cane bagasse. Brazilian J. Chem. Eng. (2015). https://doi.org/10.1590/0104-6632.20150321s00003146

    Article  Google Scholar 

  60. Affandi, S., Setyawan, H., Winardi, S., Purwanto, A., Balgis, R.: A facile method for production of high-purity silica xerogel from bagasse ash. Adv. Powder Technol. (2009). https://doi.org/10.1016/j.apt.2009.03.008

    Article  Google Scholar 

  61. Embong, R., Shafiq, N., Kusbiantoro, A., Nuruddin, M.F.: Effectiveness of low-concentration acid and solar drying as pre-treatment features for producing pozzolanic sugarcane bagasse ash. J. Clean. Prod. (2016). https://doi.org/10.1016/j.jclepro.2015.09.066

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support provided by CAPES, CNPq (PDJ Process: 150542/2017-8, Project: 438020/2016-2). To the technical staff from Central Laboratory of Electronic Microscopy (LCME) from the Federal University of Santa Catarina (UFSC). To the employees from the sugarcane kiosk for the kind donation of sugarcane bagasse and leaves. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) – CAPES-PRINT (Project Number: 88881.310728/2018-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luyza Bortolotto Teixeira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bortolotto Teixeira, L., Guzi de Moraes, E., Paolinelli Shinhe, G. et al. Obtaining Biogenic Silica from Sugarcane Bagasse and Leaf Ash. Waste Biomass Valor 12, 3205–3221 (2021). https://doi.org/10.1007/s12649-020-01230-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01230-y

Keyword

Navigation