Skip to main content
Log in

Bioactive Protein Hydrolysate Obtained from Canned Sardine and Brewing By-products: Impact of Gastrointestinal Digestion and Transepithelial Absorption

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

A sardine protein hydrolysate (SPH) was prepared by hydrolysis of sarcoplasmic proteins from canned sardine by-product with proteases from brewer’s spent yeast (BSY). The SPH presented in vitro angiotensin converting enzyme-inhibitory (ACE-I) and ferric reducing antioxidant potential (FRAP). However, the challenge before in vivo efficacy studies is to understand the impact of ultrafiltration (UF), simulated gastrointestinal (GI) digestion, and the intestinal cell permeability. Thus, this work was carried out to study the influence of these parameters on SPH bioactivity; two predictive models for human intestinal absorption were compared. Results showed that ACE-I and antioxidant activities were improved after UF of SPH through a 10 kDa cut-off membrane; simulated GI increased the FRAP value whereas the ACE-I remained similar. The apparent permeability coefficients of < 10 kDa fraction evaluated using Caco-2 and Caco-2/HT29-MTX cell models were 5.89 × 10−6 cm/s and 10.93 × 10−6 cm/s, respectively. Mass spectrometry revealed that molecules with m/z between 1000 and 5000 were transported across Caco-2/HT29-MTX cell monolayer. Basolateral permeates presented antioxidant activity but no ACE-I activity was detected. These results suggest that SPH prepared by BSY proteases is promising as functional ingredient with enhanced antioxidant activity and justifies further in vivo studies to confirm its pharmacological efficacy.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Miguel, M., Davalos, A., Manso, M.A., de la Pena, G., Lasuncion, M.A., Lopez-Fandino, R.: Transepithelial transport across Caco-2 cell monolayers of antihypertensive egg-derived peptides PepT1-mediated flux of Tyr-Pro-Ile. Mol. Nutr. Food Res. 52, 1507–1513 (2008)

    Article  Google Scholar 

  2. Picot, L., Ravallec, R., Fouchereau-Peron, M., Vandanjon, L., Jaouen, P., Chaplain-Derouiniot, M., Guerard, F., Chabeaud, A., Legal, Y., Alvarez, O.M., Berge, J.P., Piot, J.M., Batista, I., Pires, C., Thorkelsson, G., Delannoy, C., Jakobsen, G., Johansson, I., Bourseau, P.: Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties. J. Sci. Food Agric. 90, 1819–1826 (2010)

    Google Scholar 

  3. Samaranayaka, A.G., Kitts, D.D., Li-Chan, E.C.: Antioxidative and angiotensin-I-converting enzyme inhibitory potential of a Pacific Hake (Merluccius productus) fish protein hydrolysate subjected to simulated gastrointestinal digestion and Caco-2 cell permeation. J. Agric. Food Chem. 58, 1535–1542 (2010)

    Article  Google Scholar 

  4. Ding, L., Zhang, Y., Jiang, Y., Wang, L., Liu, B., Liu, J.: Transport of egg white ACE-inhibitory peptide Gln-Ile-Gly-Leu-Phe in human intestinal Caco-2 cell monolayers with cytoprotective effect. J. Agric. Food Chem. 62, 3177–3182 (2014)

    Article  Google Scholar 

  5. Wiriyaphan, C., Xiao, H., Decker, E.A., Yongsawatdigul, J.: Chemical and cellular antioxidative properties of threadfin bream (Nemipterus spp) surimi byproduct hydrolysates fractionated by ultrafiltration. Food Chem. 167, 7–15 (2015)

    Article  Google Scholar 

  6. Cinq-Mars, C.D., Hu, C., Kitts, D.D., Li-Chan, E.C.: Investigations into inhibitor type and mode simulated gastrointestinal digestion and cell transport of the angiotensin I-converting enzyme-inhibitory peptides in Pacific hake (Merluccius productus) fillet hydrolysate. J. Agric. Food Chem. 56, 410–419 (2008)

    Article  Google Scholar 

  7. Sarmento, B., Andrade, F., Silva, S.B., Rodrigues, F., das Neves, J., Ferreira, D.: Cell-based in vitro models for predicting drug permeability. Expert Opin. Drug Metab. Toxicol. 8, 607–621 (2012)

    Article  Google Scholar 

  8. Pérez-Veja, J.A., Olivera-Castillo, L., Gómez-Ruiz, J.Á., Hernández-Ledesma, B.: Release of multifunctional peptides by gastrointestinal digestion of sea cucumber (Isostichopus badionotus). J. Funct. Foods 5, 869–877 (2013)

    Article  Google Scholar 

  9. Sambuy, Y., De Angelis, I., Ranaldi, G., Scarino, M., Stammati, A., Zucco, F.: The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol. Toxicol. 21, 1–26 (2005)

    Article  Google Scholar 

  10. del Mar Contreras, M., Sancho, A., Recio, I., Mills, C.: Absorption of casein antihypertensive peptides through an in vitro model of ipithelium. Food Dig. 3, 16–24 (2012)

    Article  Google Scholar 

  11. Hilgendorf, C., Spahn-Langguth, H., Regardh, C.G., Lipka, E., Amidon, G.L., Langguth, P.: Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion inside- and outside-directed carrier-mediated transport. J. Pharm. Sci. 89, 63–75 (2000)

    Article  Google Scholar 

  12. Antunes, F., Andrade, F., Araujo, F., Ferreira, D., Sarmento, B.: Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. Eur. J. Pharm. Biopharm. 83, 427–435 (2013)

    Article  Google Scholar 

  13. Calatayud, M., Vazquez, M., Devesa, V., Velez, D.: In vitro study of intestinal transport of inorganic and methylated arsenic species by Caco-2/HT29-MTX cocultures. Chem. Res. Toxicol. 25, 2654–2662 (2012)

    Article  Google Scholar 

  14. Araujo, F., Sarmento, B.: Towards the characterization of an in vitro triple co-culture intestine cell model for permeability studies. Int. J. Pharm. 458, 128–134 (2013)

    Article  Google Scholar 

  15. Vieira, E.F., Ferreira, I.M.P.L.V.O.: Antioxidant and antihypertensive hydrolysates obtained from by-products of cannery sardine and brewing industries. Int. J. Food Prop. 20, 662–673 (2017)

    Article  Google Scholar 

  16. Held, P., Hurley, J.: Determination of total protein by the Lowry method using the BioTek instruments’ ELx808 microplate reader (2006)

  17. Vieira, E., Teixeira, J., Ferreira, I.M.P.L.V.O.: Valorisation of brewer’s spent grain and spent yeast through protein hydrolysates with antioxidant properties. Eur. Food Res. Technol. 242, 1975–1984 (2016)

    Article  Google Scholar 

  18. Vieira, E.F., Pinho, O., Ferreira, I.M.P.L.V.O.: Bio-functional properties of sardine protein hydrolysates obtained by brewer’s spent yeast and commercial proteases. J. Sci. Food Agric. 97, 5414–5422 (2017)

    Article  Google Scholar 

  19. Cupp-Enyard, C.: Sigma’s non-specific protease activity assay—casein as a substrate. JoVE 19, 899 (2008)

    Google Scholar 

  20. Hsu, K.-C.: Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chem. 122, 42–48 (2010)

    Article  Google Scholar 

  21. Jansen, E., Ruskovska, T.: Comparative analysis of serum (anti)oxidative status parameters in healthy persons. Int. J. Mol. Sci. 14, 6106–6115 (2013)

    Article  Google Scholar 

  22. Sentandreu, M.Á., Toldrá, F.: A rapid simple and sensitive fluorescence method for the assay of angiotensin-I converting enzyme. Food Chem. 97, 546–554 (2006)

    Article  Google Scholar 

  23. Quiros, A., del Mar Contreras, M., Ramos, M., Amigo, L., Recio, I.: Stability to gastrointestinal enzymes and structure-activity relationship of beta-casein-peptides with antihypertensive properties. Peptides 30, 1848–1853 (2009)

    Article  Google Scholar 

  24. Fayyazbakhsh, F., Solati-Hashjin, M., Keshtkar, A., Shokrgozar, M.A., Dehghan, M.M., Larijani, B.: Release behavior and signaling effect of vitamin D3 in layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffold: an in vitro evaluation. Colloids Surf. B 158, 697–708 (2017)

    Article  Google Scholar 

  25. Ferraro, V., Ferreira Jorge, R., Cruz, I.B., Antunes, F., Sarmento, B., Castro, P.M.L., Pintado, M.E.: In vitro intestinal absorption of amino acid mixtures extracted from codfish (Gadus morhua L) salting wastewater. Int. J. Food Sci. Technol. 49, 27–33 (2014)

    Article  Google Scholar 

  26. Ferreira, I.M.P.L.V.O., Eça, R., Pinho, O., Tavares, P., Pereira, A., Roque, A.: Development and validation of an HPLC/UV method for quantification of bioactive peptides in fermented milks. J. Liq. Chromatogr. Relat. Technol. 30, 2139–2147 (2007)

    Article  Google Scholar 

  27. Matsui, T., Matsufuji, H., Seki, E., Osajima, K., Nakashima, M., Osajima, Y.: Inhibition of angiotensin I-converting enzyme by Bacillus licheniformis alkaline protease hydrolyzates derived from sardine muscle. Biosci. Biotechnol. Biochem. 57, 922–925 (1993)

    Article  Google Scholar 

  28. Bougatef, A., Nedjar-Arroume, N., Ravallec-Plé, R., Leroy, Y., Guillochon, D., Barkia, A., Nasri, M.: Angiotensin I-converting enzyme (ACE) inhibitory activities of sardinelle (Sardinella aurita) by-products protein hydrolysates obtained by treatment with microbial and visceral fish serine proteases. Food Chem. 111, 350–356 (2008)

    Article  Google Scholar 

  29. Jeon, Y.-J., Byun, H.-G., Kim, S.-K.: Improvement of functional properties of cod frame protein hydrolysates using ultrafiltration membranes. Process Biochem. 35, 471–478 (1999)

    Article  Google Scholar 

  30. Cinq-Mars, C.D., Li-Chan, E.C.: Optimizing angiotensin I-converting enzyme inhibitory activity of Pacific hake (Merluccius productus) fillet hydrolysate using response surface methodology and ultrafiltration. J. Agric. Food Chem. 55, 9380–9388 (2007)

    Article  Google Scholar 

  31. Lee, S.-H., Qian, Z.-J., Kim, S.-K.: A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chem. 118, 96–102 (2010)

    Article  Google Scholar 

  32. Connolly, A., O'Keeffe, M.B., Piggott, C.O., Nongonierma, A.B., FitzGerald, R.J.: Generation and identification of angiotensin converting enzyme (ACE) inhibitory peptides from a brewers' spent grain protein isolate. Food Chem. 76, 64–71 (2015)

    Article  Google Scholar 

  33. Matsufuji, H., Matsui, T., Seki, E., Osajima, K., Nakashima, M., Osajima, Y.: Angiotensin I-converting enzyme inhibitory peptides in an alkaline protease hydrolyzate derived from sardine muscle. Biosci. Biotechnol. Biochem. 58, 2244–2245 (1994)

    Article  Google Scholar 

  34. Wu, J., Ding, X.: Characterization of inhibition and stability of soy-protein-derived angiotensin I-converting enzyme inhibitory peptides. Food Res. Int. 35, 367–375 (2002)

    Article  Google Scholar 

  35. Yee, S.: In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man—fact or myth. Pharm. Res. 14, 763–766 (1997)

    Article  Google Scholar 

  36. Gouyer, V., Wiede, A., Buisine, M.P., Dekeyser, S., Moreau, O., Lesuffleur, T., Hoffmann, W., Huet, G.: Specific secretion of gel-forming mucins and TFF peptides in HT-29 cells of mucin-secreting phenotype. Biochim. Biophys. Acta 1539, 71–84 (2001)

    Article  Google Scholar 

  37. Behrens, I., Stenberg, P., Artursson, P., Kissel, T.: Transport of lipophilic drug molecules in a new mucus-secreting cell culture model based on HT29-MTX cells. Pharm. Res. 18, 1138–1145 (2001)

    Article  Google Scholar 

  38. Pontier, C., Pachot, J., Botham, R., Lenfant, B., Arnaud, P.: HT29-MTX and Caco-2/TC7 monolayers as predictive models for human intestinal absorption: role of the mucus layer. J. Pharm. Sci. 90, 1608–1619 (2001)

    Article  Google Scholar 

  39. Vermeirssen, V., Van Camp, J., Verstraete, W.: Fractionation of angiotensin I converting enzyme inhibitory activity from pea and whey protein in vitro gastrointestinal digests. J. Sci. Food Agric. 85, 399–405 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work received financial support from project UID/QUI/50006/2013—POCI/01/0145/FEDER/007265 with financial support from FCT/MEC through national funds and co-financed by FEDER, under the Partnership Agreement PT2020. One of the authors (Elsa F. Vieira) wishes to thank the Fundação para a Ciência e a Tecnologia, Portugal the grant SFRH/BD/81845/2011. Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsa F. Vieira.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, E.F., das Neves, J. & Ferreira, I.M.P.L.V.O. Bioactive Protein Hydrolysate Obtained from Canned Sardine and Brewing By-products: Impact of Gastrointestinal Digestion and Transepithelial Absorption. Waste Biomass Valor 12, 1281–1292 (2021). https://doi.org/10.1007/s12649-020-01113-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01113-2

Keywords

Navigation