Skip to main content

Advertisement

Log in

Preparation and Application of Hierarchical Porous Carbon Materials from Waste and Biomass: A Review

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Hierarchical porous carbon (HPC) materials contain organized pores having different scales of diameters. These materials exhibit surprisingly high performance in various applications due to the functional combination of hierarchical pores. This paper reviews the preparation of HPC from waste and biomass, and their potential applications. Biomass with naturally organized hierarchical structure, such as wood, grass and nut shell, have been widely used as raw materials, from which, hierarchical porosity can be formed through simple pyrolysis-activation. Influences of the types and dosages of activating agent, as well as the pyrolysis/activation conditions on the specific surface area, pore volume and hierarchical porous structure of the structured biomass-based HPC are discussed. For non-structured raw materials such as sucrose, pitch and plastics, novel technologies have been developed to prepare HPC; these include hard-/soft-template methods, hydrothermal carbonization, chemical vapor deposition, spray pyrolysis and autogenic pressure carbonization. The approaches to design or control the structures and properties of HPC made from non-structured materials are also reviewed. Moreover, advanced applications of HPC in energy storage, deionization, adsorption and catalysis are summarized.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Çeçen, F., Aktas, Ö.: Activated Carbon for Water and Wastewater Treatment: Integration of Adsorption and Biological Treatment. Wiley, New York (2011)

    Book  Google Scholar 

  2. Borghei, M., Lehtonen, J., Liu, L., Rojas, O.J.: Advanced biomass-derived electrocatalysts for the oxygen reduction reaction. Adv. Mater. 30(24), 1703691 (2018). https://doi.org/10.1002/adma.201703691

    Article  Google Scholar 

  3. Roberts, A.D., Li, X., Zhang, H.: Porous carbon spheres and monoliths: Morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev. 43(13), 4341–4356 (2014). https://doi.org/10.1039/c4cs00071d

    Article  Google Scholar 

  4. Tripathi, P.K., Gan, L., Liu, M., Rao, N.N.: Mesoporous carbon nanomaterials as environmental adsorbents. J. Nanosci. Nanotechnol. 14(2), 1823–1837 (2014). https://doi.org/10.1166/jnn.2014.8763

    Article  Google Scholar 

  5. Gamby, J., Taberna, P.L., Simon, P., Fauvarque, J.F., Chesneau, M.: Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101(1), 109–116 (2001). https://doi.org/10.1016/S0378-7753(01)00707-8

    Article  Google Scholar 

  6. Ghosh, A., Lee, Y.H.: Carbon-based electrochemical capacitors. Chemsuschem 5(3), 480–499 (2012). https://doi.org/10.1002/cssc.201100645

    Article  Google Scholar 

  7. Zhang, L., Zhao, X.: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009). https://doi.org/10.1039/B813846J

    Article  Google Scholar 

  8. Jiang, W., Pan, J., Wang, J., Cai, J., Gang, X., Liu, X., Sun, Y.: A coin like porous carbon derived from Al-MOF with enhanced hierarchical structure for fast charging and super long cycle energy storage. Carbon 154, 428–438 (2019). https://doi.org/10.1016/j.carbon.2019.08.035

    Article  Google Scholar 

  9. Ghimbeu, C.M., Luchnikov, V.A.: Hierarchical porous nitrogen-doped carbon beads derived from biosourced chitosan polymer. Microporous Mesoporous Mater. 263, 42–52 (2018). https://doi.org/10.1016/j.micromeso.2017.12.001

    Article  Google Scholar 

  10. Gu, N., Liu, J., Ye, J., Chang, N., Li, Y.-Y.: Bioenergy, ammonia and humic substances recovery from municipal solid waste leachate: A review and process integration. Biores. Technol. 293, 122159 (2019). https://doi.org/10.1016/j.biortech.2019.122159

    Article  Google Scholar 

  11. Cheng, Z., Zhu, S., Chen, X., Wang, L., Lou, Z., Feng, L.: Variations and environmental impacts of odor emissions along the waste stream. J. Hazard. Mater. (2019). https://doi.org/10.1016/j.jhazmat.2019.120912

    Article  Google Scholar 

  12. Lonati, G., Cambiaghi, A., Cernuschi, S.: The actual impact of waste-to-energy plant emissions on air quality: a case study from northern Italy. Detritus 6, 77–84 (2019). https://doi.org/10.31025/2611-4135/2019.13817

    Article  Google Scholar 

  13. Baskar, C., Baskar, S., Dhillon, R.S.: Biomass Conversion: The Interface of Biotechnology, Chemistry and Materials Science. Springer Science & Business Media, New York (2012)

    Book  Google Scholar 

  14. Gonzalez, J.F., Roman, S., Gonzalez-Garcia, C.M., Valente Nabais, J.M., Luis Ortiz, A.: Porosity development in activated carbons prepared from walnut shells by carbon dioxide or steam activation. Ind. Eng. Chem. Res. 48(16), 7474–7481 (2009). https://doi.org/10.1021/ie801848x

    Article  Google Scholar 

  15. Wei, H., Deng, S., Hu, B., Chen, Z., Wang, B., Huang, J., Yu, G.: Granular bamboo-derived activated carbon for high CO2 adsorption: the dominant role of narrow micropores. Chemsuschem 5(12), 2354–2360 (2012). https://doi.org/10.1002/cssc.201200570

    Article  Google Scholar 

  16. Fratzl, P., Weinkamer, R.: Nature’s hierarchical materials. Prog. Mater Sci. 52(8), 1263–1334 (2007). https://doi.org/10.1016/j.pmatsci.2007.06.001

    Article  Google Scholar 

  17. Thanh-Dinh, N., Shopsowitz, K.E., MacLachlan, M.J.: Mesoporous nitrogen-doped carbon from nanocrystalline chitin assemblies. J. Mater. Chem. A 2(16), 5915–5921 (2014). https://doi.org/10.1039/c3ta15255c

    Article  Google Scholar 

  18. Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G., Morgan, T.J.: An overview of the organic and inorganic phase composition of biomass. Fuel 94(1), 1–33 (2012). https://doi.org/10.1016/j.fuel.2011.09.030

    Article  Google Scholar 

  19. Liu, W.-J., Jiang, H., Yu, H.-Q.: Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem. Rev. 115(22), 12251–12285 (2015). https://doi.org/10.1021/acs.chemrev.5b00195

    Article  Google Scholar 

  20. Babu, B.V.: Biomass pyrolysis: a state-of-the-art review. Biofuels Bioprod. Bioref. Biofpr 2(5), 393–414 (2008). https://doi.org/10.1002/bbb.92

    Article  MathSciNet  Google Scholar 

  21. Li, S., Lyons-Hart, J., Banyasz, J., Shafer, K.: Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis. Fuel 80(12), 1809–1817 (2001). https://doi.org/10.1016/s0016-2361(01)00064-3

    Article  Google Scholar 

  22. Shen, D.K., Gu, S., Bridgwater, A.V.: Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR. J. Anal. Appl. Pyrolysis 87(2), 199–206 (2010). https://doi.org/10.1016/j.jaap.2009.12.001

    Article  Google Scholar 

  23. Chu, S., Subrahmanyam, A.V., Huber, G.W.: The pyrolysis chemistry of a beta-O-4 type oligomeric lignin model compound. Green Chem. 15(1), 125–136 (2013). https://doi.org/10.1039/c2gc36332a

    Article  Google Scholar 

  24. Antal, M.J., Gronli, M.: The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 42(8), 1619–1640 (2003). https://doi.org/10.1021/ie0207919

    Article  Google Scholar 

  25. Zhao, L., Cao, X., Masek, O., Zimmerman, A.: Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J. Hazard. Mater. 256, 1–9 (2013). https://doi.org/10.1016/j.jhazmat.2013.04.015

    Article  Google Scholar 

  26. Yuan, J.-H., Xu, R.-K., Zhang, H.: The forms of alkalis in the biochar produced from crop residues at different temperatures. Biores. Technol. 102(3), 3488–3497 (2011). https://doi.org/10.1016/j.biortech.2010.11.018

    Article  Google Scholar 

  27. Keown, D.M., Hayashi, J.-I., Li, C.-Z.: Effects of volatile-char interactions on the volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass. Fuel 87(7), 1187–1194 (2008). https://doi.org/10.1016/j.fuel.2007.05.056

    Article  Google Scholar 

  28. Nowakowski, D.J., Jones, J.M., Brydson, R.M.D., Ross, A.B.: Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice. Fuel 86(15), 2389–2402 (2007). https://doi.org/10.1016/j.fuel.2007.01.026

    Article  Google Scholar 

  29. Khiari, B., Ghouma, I., Ibn Ferjani, A., Azzaz, A.A., Jellali, S., Limousy, L., Jeguirim, M.: Kenaf stems: thermal characterization and conversion for biofuel and biochar production. Fuel (2020). https://doi.org/10.1016/j.fuel.2019.116654

    Article  Google Scholar 

  30. Angin, D.: Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Biores. Technol. 128, 593–597 (2013). https://doi.org/10.1016/j.biortech.2012.10.150

    Article  Google Scholar 

  31. Sun, J., He, F., Pan, Y., Zhang, Z.: Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types. Acta Agric. Scand. Sect. B 67(1), 12–22 (2017). https://doi.org/10.1080/09064710.2016.1214745

    Article  Google Scholar 

  32. Al-Wabel, M.I., Al-Omran, A., El-Naggar, A.H., Nadeem, M., Usman, A.R.A.: Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Biores. Technol. 131, 374–379 (2013). https://doi.org/10.1016/j.biortech.2012.12.165

    Article  Google Scholar 

  33. Uchimiya, M., Wartelle, L.H., Klasson, K.T., Fortier, C.A., Lima, I.M.: Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J. Agric. Food Chem. 59(6), 2501–2510 (2011). https://doi.org/10.1021/jf104206c

    Article  Google Scholar 

  34. Wang, J., Kaskel, S.: KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22(45), 23710–23725 (2012). https://doi.org/10.1039/C2JM34066F

    Article  Google Scholar 

  35. Jagtoyen, M., Derbyshire, F.: Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon 36(7–8), 1085–1097 (1998). https://doi.org/10.1016/s0008-6223(98)00082-7

    Article  Google Scholar 

  36. Chang, B., Guo, Y., Li, Y., Yin, H., Zhang, S., Yang, B., Dong, X.: Graphitized hierarchical porous carbon nanospheres: simultaneous activation/graphitization and superior supercapacitance performance. J. Mater. Chem. A 3(18), 9565–9577 (2015). https://doi.org/10.1039/C5TA00867K

    Article  Google Scholar 

  37. Gong, Y., Li, D., Luo, C., Fu, Q., Pan, C.: Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 19(17), 4132–4140 (2017). https://doi.org/10.1039/C7GC01681F

    Article  Google Scholar 

  38. Huang, D.C., Liu, Q.L., Zhang, W., Ding, J., Gu, J.J., Zhu, S.M., Guo, Q.X., Zhang, D.: Preparation of high-surface-area activated carbon from Zizania latifolia leaves by one-step activation with K2CO3/rarefied air. J. Mater. Sci. 46(15), 5064–5070 (2011). https://doi.org/10.1007/s10853-011-5429-4

    Article  Google Scholar 

  39. Xiang, X., Liu, E., Li, L., Yang, Y., Shen, H., Huang, Z., Tian, Y.: Activated carbon prepared from polyaniline base by K 2CO 3 activation for application in supercapacitor electrodes. J. Solid State Electrochem. 15(3), 579–585 (2011). https://doi.org/10.1007/s10008-010-1130-9

    Article  Google Scholar 

  40. Li, Y.-T., Pi, Y.-T., Lu, L.-M., Xu, S.-H., Ren, T.-Z.: Hierarchical porous active carbon from fallen leaves by synergy of K2CO3 and their supercapacitor performance. J. Power Sources 299, 519–528 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.039

    Article  Google Scholar 

  41. Qiu, D., Guo, N., Gao, A., Zheng, L., Xu, W., Li, M., Wang, F., Yang, R.: Preparation of oxygen-enriched hierarchically porous carbon by KMnO4 one-pot oxidation and activation: mechanism and capacitive energy storage. Electrochim. Acta 294, 398–405 (2019). https://doi.org/10.1016/j.electacta.2018.10.049

    Article  Google Scholar 

  42. Qiu, D., Kang, C., Gao, A., Xie, Z., Li, Y., Li, M., Wang, F., Yang, R.: Sustainable low-temperature activation to customize pore structure and heteroatoms of biomass-derived carbon enabling unprecedented durable supercapacitors. ACS Sustain. Chem. Eng. 7(17), 14629–14638 (2019). https://doi.org/10.1021/acssuschemeng.9b02425

    Article  Google Scholar 

  43. Li, Z., An, Y., Hu, Z., An, N., Zhang, Y., Guo, B., Zhang, Z., Yang, Y., Wu, H.: Preparation of a two-dimensional flexible MnO2/graphene thin film and its application in a supercapacitor. J. Mater. Chem. A 4(27), 10618–10626 (2016). https://doi.org/10.1039/c6ta03358j

    Article  Google Scholar 

  44. Kwiatkowski, M., Broniek, E.: An analysis of the porous structure of activated carbons obtained from hazelnut shells by various physical and chemical methods of activation. Colloids Surf. A 529, 443–453 (2017). https://doi.org/10.1016/j.colsurfa.2017.06.028

    Article  Google Scholar 

  45. Kim, D.W., Kil, H.S., Nakabayashi, K., Yoon, S.H., Jin, M.: Structural elucidation of physical and chemical activation mechanisms based on the microdomain structure model. Carbon 114, 98–105 (2017). https://doi.org/10.1016/j.carbon.2016.11.082

    Article  Google Scholar 

  46. Yakaboylu, G.A., Yumak, T., Jiang, C., Zondlo, J.W., Wang, J., Sabolsky, E.M.: Preparation of highly porous carbon through slow oxidative torrefaction, pyrolysis, and chemical activation of lignocellulosic biomass for high-performance supercapacitors. Energy Fuels 33(9), 9309–9329 (2019). https://doi.org/10.1021/acs.energyfuels.9b01260

    Article  Google Scholar 

  47. Guo, N., Li, M., Sun, X., Wang, F., Yang, R.: Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities. Green Chem. 19(11), 2595–2602 (2017). https://doi.org/10.1039/C7GC00506G

    Article  Google Scholar 

  48. Liu, Y., Huang, B., Lin, X., Xie, Z.: Biomass-derived hierarchical porous carbons: boosting the energy density of supercapacitors via an ionothermal approach. J. Mater. Chem. A 5(25), 13009–13018 (2017). https://doi.org/10.1039/C7TA03639F

    Article  Google Scholar 

  49. Yin, L., Chen, Y., Li, D., Zhao, X., Hou, B., Cao, B.: 3-Dimensional hierarchical porous activated carbon derived from coconut fibers with high-rate performance for symmetric supercapacitors. Mater. Des. 111, 44–50 (2016). https://doi.org/10.1016/j.matdes.2016.08.070

    Article  Google Scholar 

  50. Konikkara, N., Kennedy, L.J., Vijaya, J.J.: Preparation and characterization of hierarchical porous carbons derived from solid leather waste for supercapacitor applications. J. Hazard. Mater. 318, 173–185 (2016). https://doi.org/10.1016/j.jhazmat.2016.06.037

    Article  Google Scholar 

  51. Zhou, P., Wan, J., Wang, X., Chen, J., Gong, Y., Xu, K.: Three-dimensional hierarchical porous carbon cathode derived from waste tea leaves for the electrocatalytic degradation of phenol. Langmuir 35(40), 12914–12926 (2019). https://doi.org/10.1021/acs.langmuir.9b02017

    Article  Google Scholar 

  52. Dinh Viet, C., Liu, N.-L., Viet Anh, N., Hou, C.-H.: Meso/micropore-controlled hierarchical porous carbon derived from activated biochar as a high-performance adsorbent for copper removal. Sci. Total Environ. 692, 844–853 (2019). https://doi.org/10.1016/j.scitotenv.2019.07.125

    Article  Google Scholar 

  53. Yang, X., Li, C., Chen, Y.: Hierarchical porous carbon with ultrahigh surface area from corn leaf for high-performance supercapacitors application. J. Phys. D-Appl. Phys. 50(5), 055501 (2017). https://doi.org/10.1088/1361-6463/50/5/055501

    Article  Google Scholar 

  54. Chang, B., Guo, Y., Li, Y., Yang, B.: Hierarchical porous carbon derived from recycled waste filter paper as high-performance supercapacitor electrodes. RSC Adv. 5(88), 72019–72027 (2015). https://doi.org/10.1039/C5RA12651G

    Article  Google Scholar 

  55. Vijayakumar, M., Santhosh, R., Adduru, J., Rao, T.N., Karthik, M.: Activated carbon fibres as high performance supercapacitor electrodes with commercial level mass loading. Carbon 140, 465–476 (2018). https://doi.org/10.1016/j.carbon.2018.08.052

    Article  Google Scholar 

  56. Xie, L., Sun, G., Su, F., Guo, X., Kong, Q., Li, X., Huang, X., Wan, L., Song, W., Li, K., Lv, C., Chen, C.-M.: Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. J. Mater. Chem. A 4(5), 1637–1646 (2016). https://doi.org/10.1039/c5ta09043a

    Article  Google Scholar 

  57. Zhou, X., Chen, F., Bai, T., Long, B., Liao, Q., Ren, Y., Yang, J.: Interconnected highly graphitic carbon nanosheets derived from wheat stalk as high performance anode materials for lithium ion batteries. Green Chem. 18(7), 2078–2088 (2016). https://doi.org/10.1039/C5GC02122G

    Article  Google Scholar 

  58. Xia, J., Zhang, N., Chong, S., Li, D., Chen, Y., Sun, C.: Three-dimensional porous graphene-like sheets synthesized from biocarbon via low-temperature graphitization for a supercapacitor. Green Chem. 20, 694–700 (2018). https://doi.org/10.1039/C7GC03426A

    Article  Google Scholar 

  59. Qian, W., Sun, F., Xu, Y., Qiu, L., Liu, C., Wang, S., Yan, F.: Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ. Sci. 7(1), 379–386 (2014). https://doi.org/10.1039/c3ee43111h

    Article  Google Scholar 

  60. Luan, Y., Wang, L., Guo, S., Jiang, B., Zhao, D., Yan, H., Tian, C., Fu, H.: A hierarchical porous carbon material from a loofah sponge network for high performance supercapacitors. RSC Adv. 5(53), 42430–42437 (2015). https://doi.org/10.1039/C5RA05688H

    Article  Google Scholar 

  61. Ba, H., Wang, W., Pronkin, S., Romero, T., Baaziz, W., Lam, N.-D., Chu, W., Ersen, O., Cuong, P.-H.: Biosourced foam-like activated carbon materials as high-performance supercapacitors. Adv. Sustain. Syst. 2(2), 1700123 (2018). https://doi.org/10.1002/adsu.201700123

    Article  Google Scholar 

  62. Duan, B., Gao, X., Yao, X., Fang, Y., Huang, L., Zhou, J., Zhang, L.: Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy 27, 482–491 (2016). https://doi.org/10.1016/j.nanoen.2016.07.034

    Article  Google Scholar 

  63. Li, Z., Zhang, L., Amirkhiz, B.S., Tan, X., Xu, Z., Wang, H., Olsen, B.C., Holt, C.M.B., Mitlin, D.: Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Adv. Energy Mater. 2(4), 431–437 (2012). https://doi.org/10.1002/aenm.201100548

    Article  Google Scholar 

  64. Bai, Q., Xiong, Q., Li, C., Shen, Y., Uyama, H.: Hierarchical porous carbons from poly(methyl methacrylate)/bacterial cellulose composite monolith for high-performance supercapacitor electrodes. ACS Sustain. Chem. Eng. 5(10), 9390–9401 (2017). https://doi.org/10.1021/acssuschemeng.7b02488

    Article  Google Scholar 

  65. Ma, Y., You, S., Ling, B., Xing, Z., Chen, H., Dai, Y., Zhang, C., Ren, N., Zou, J.: Biomass pectin-derived N, S-enriched carbon with hierarchical porous structure as a metal-free catalyst for enhancing bio-electricity generation. Int. J. Hydrogen Energy 44(31), 16624–16638 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.158

    Article  Google Scholar 

  66. Castro-Muniz, A., Lorenzo-Fierro, S., Martinez-Alonso, A., Tascon, J.M.D., Fierro, V., Suarez-Garcia, F., Paredes, J.I.: Ordered mesoporous carbons obtained from low-value coal tar products for electrochemical energy storage and water remediation. Fuel Process. Technol. 196, 106152 (2019). https://doi.org/10.1016/j.fuproc.2019.106152

    Article  Google Scholar 

  67. Kim, M.-H., Kim, K.-B., Park, S.-M., Roh, K.C.: Hierarchically structured activated carbon for ultracapacitors. Sci. Rep. 6, 21182 (2016). https://doi.org/10.1038/srep21182

    Article  Google Scholar 

  68. Yu, S., Wang, H., Hu, C., Zhu, Q., Qiao, N., Xu, B.: Facile synthesis of nitrogen-doped, hierarchical porous carbons with a high surface area: The activation effect of a nano-ZnO template. J. Mater. Chem. A 4(42), 16341–16348 (2016). https://doi.org/10.1039/C6TA07047G

    Article  Google Scholar 

  69. Wang, H., Yu, S., Xu, B.: Hierarchical porous carbon materials prepared using nano-ZnO as a template and activation agent for ultrahigh power supercapacitors. Chem. Commun. 52(77), 11512–11515 (2016). https://doi.org/10.1039/C6CC05911B

    Article  Google Scholar 

  70. Geng, W., Ma, F., Wu, G., Song, S., Wan, J., Ma, D.: MgO-templated hierarchical porous carbon sheets derived from coal tar pitch for supercapacitors. Electrochim. Acta 191, 854–863 (2016). https://doi.org/10.1016/j.electacta.2016.01.148

    Article  Google Scholar 

  71. Cao, J.H., Zhu, C.Y., Aoki, Y., Habazaki, H.: Starch-derived hierarchical porous carbon with controlled porosity for high performance supercapacitors. ACS Sustain. Chem. Eng. 6(6), 7292–7303 (2018). https://doi.org/10.1021/acssuschemeng.7b04459

    Article  Google Scholar 

  72. Zhang, W., Lin, H., Lin, Z., Yin, J., Lu, H., Liu, D., Zhao, M.: 3D hierarchical porous carbon for supercapacitors prepared from lignin through a facile template-free method. Chemsuschem 8(12), 2114–2122 (2015). https://doi.org/10.1002/cssc.201403486

    Article  Google Scholar 

  73. Shao, J.Q., Ma, F.W., Wu, G., Dai, C.C., Geng, W.D., Song, S.J., Wan, J.F.: In-situ MgO (CaCO3) templating coupled with KOH activation strategy for high yield preparation of various porous carbons as supercapacitor electrode materials. Chem. Eng. J. 321, 301–313 (2017). https://doi.org/10.1016/j.cej.2017.03.092

    Article  Google Scholar 

  74. Zhong, X.L., Yuan, W.Y., Kang, Y.J., Xie, J.L., Hu, F.X., Li, C.M.: Biomass-derived hierarchical nanoporous carbon with rich functional groups for direct-electron-transfer-based glucose sensing. Chemelectrochem 3(1), 144–151 (2016). https://doi.org/10.1002/celc.201500351

    Article  Google Scholar 

  75. Du, G., Bian, Q., Zhang, J., Yang, X.: Facile fabrication of hierarchical porous carbon for a high-performance electrochemical capacitor. RSC Adv. 7(73), 46329–46335 (2017). https://doi.org/10.1039/C7RA08402A

    Article  Google Scholar 

  76. Yang, X., Du, G., Zhang, L., Liu, Y.: Preparation of hierarchical porous carbon material derived from starch for high-performance electrochemical capacitor. Mater. Lett. 183, 52–55 (2016). https://doi.org/10.1016/j.matlet.2016.07.069

    Article  Google Scholar 

  77. Wang, B., Li, D., Tang, M., Ma, H., Gui, Y., Tian, X., Quan, F., Song, X., Xia, Y.: Alginate-based hierarchical porous carbon aerogel for high-performance supercapacitors. J. Alloy. Compd. 749, 517–522 (2018). https://doi.org/10.1016/j.jallcom.2018.03.223

    Article  Google Scholar 

  78. Estevez, L., Dua, R., Bhandari, N., Ramanujapuram, A., Wang, P., Giannelis, E.P.: A facile approach for the synthesis of monolithic hierarchical porous carbons—high performance materials for amine based CO2 capture and supercapacitor electrode. Energy Environ. Sci. 6(6), 1785–1790 (2013). https://doi.org/10.1039/C3EE40549D

    Article  Google Scholar 

  79. Chen, W., Zhang, H., Huang, Y., Wang, W.: A fish scale based hierarchical lamellar porous carbon material obtained using a natural template for high performance electrochemical capacitors. J. Mater. Chem. 20(23), 4773–4775 (2010). https://doi.org/10.1039/c0jm00382d

    Article  Google Scholar 

  80. Liu, H.-J., Wang, X.-M., Cui, W.-J., Dou, Y.-Q., Zhao, D.-Y., Xia, Y.-Y.: Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells. J. Mater. Chem. 20(20), 4223–4230 (2010). https://doi.org/10.1039/b925776d

    Article  Google Scholar 

  81. Du, W., Wang, X., Zhan, J., Sun, X., Kang, L., Jiang, F., Zhang, X., Shao, Q., Dong, M., Liu, H., Murugadoss, V., Guo, Z.: Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochim. Acta 296, 907–915 (2019). https://doi.org/10.1016/j.electacta.2018.11.074

    Article  Google Scholar 

  82. Xia, L., Li, X., Wu, Y., Rong, M.: Wood-derived carbons with hierarchical porous structures and monolithic shapes prepared by biological-template and self-assembly strategies. ACS Sustain. Chem. Eng. 3(8), 1724–1731 (2015). https://doi.org/10.1021/acssuschemeng.5b00243

    Article  Google Scholar 

  83. Liu, Y.-N., Wang, H.-T., Kang, X.-H., Wang, Y.-F., Yang, S.-Y., Bian, S.-W.: Cotton fabric and zeolitic imidazolate framework (ZIF-8) derived hierarchical nitrogen-doped porous carbon nanotubes/carbon fabric electrodes for all-solid-state supercapacitors. J. Power Sources 402, 413–421 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.052

    Article  Google Scholar 

  84. Xu, J., Tan, Z.Q., Zeng, W.C., Chen, G.X., Wu, S.L., Zhao, Y., Ni, K., Tao, Z.C., Ikram, M., Ji, H.X., Zhu, Y.W.: A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes. Adv. Mater. 28(26), 5222–5228 (2016). https://doi.org/10.1002/adma.201600586

    Article  Google Scholar 

  85. Ding, Y.J., Zhu, J.Q., Wang, C.H., Dai, B., Li, Y.X., Qin, Y.Y., Xu, F., Peng, Q.Y., Yang, Z.Z., Bai, J., Cao, W.X., Yuan, Y., Li, Y.B.: Multifunctional three-dimensional graphene nanoribbons composite sponge. Carbon 104, 133–140 (2016). https://doi.org/10.1016/j.carbon.2016.03.058

    Article  Google Scholar 

  86. Ramakrishnan, P., Shanmugam, S.: Nitrogen-doped porous multi-nano-channel nanocarbons for use in high-performance supercapacitor applications. ACS Sustain. Chem. Eng. 4(4), 2439–2448 (2016). https://doi.org/10.1021/acssuschemeng.6b00289

    Article  Google Scholar 

  87. Liu, K., Chen, Y.-M., Policastro, G.M., Becker, M.L., Zhu, Y.: Three-dimensional bicontinuous graphene monolith from polymer templates. ACS Nano 9(6), 6041–6049 (2015). https://doi.org/10.1021/acsnano.5b01006

    Article  Google Scholar 

  88. Chaudhari, S., Kwon, S.Y., Yu, J.-S.: Ordered multimodal porous carbon with hierarchical nanostructure as high performance electrode material for supercapacitors. RSC Adv. 4(73), 38931–38938 (2014). https://doi.org/10.1039/c4ra06724j

    Article  Google Scholar 

  89. Chen, C., Wang, H., Han, C., Deng, J., Wang, J., Li, M., Tang, M., Jin, H., Wang, Y.: Asymmetric flasklike hollow carbonaceous nanoparticles fabricated by the synergistic interaction between soft template and biomass. J. Am. Chem. Soc. 139(7), 2657–2663 (2017). https://doi.org/10.1021/jacs.6b10841

    Article  Google Scholar 

  90. Nelson, K.M., Mahurin, S.M., Mayes, R.T., Williamson, B., Teague, C.M., Binder, A.J., Baggetto, L., Veith, G.M., Dai, S.: Preparation and CO2 adsorption properties of soft-templated mesoporous carbons derived from chestnut tannin precursors. Micropor. Mesopor. Mater. 222, 94–103 (2016). https://doi.org/10.1016/j.micromeso.2015.09.050

    Article  Google Scholar 

  91. Sun, L., Zhou, Y., Li, L., Zhou, H., Liu, X., Zhang, Q., Gao, B., Meng, Z., Zhou, D., Ma, Y.: Facile and green synthesis of 3D honeycomb-like N/S-codoped hierarchically porous carbon materials from bio-protic salt for flexible, temperature-resistant supercapacitors. Appl. Surf. Sci. 467, 382–390 (2019). https://doi.org/10.1016/j.apsusc.2018.10.192

    Article  Google Scholar 

  92. Sevilla, M., Antonio Macia-Agullo, J., Fuertes, A.B.: Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products. Biomass Bioenerg. 35(7), 3152–3159 (2011). https://doi.org/10.1016/j.biombioe.2011.04.032

    Article  Google Scholar 

  93. Tekin, K., Karagoz, S., Bektas, S.: A review of hydrothermal biomass processing. Renew. Sustain. Energy Rev. 40, 673–687 (2014). https://doi.org/10.1016/j.rser.2014.07.216

    Article  Google Scholar 

  94. Jain, A., Balasubramanian, R., Srinivasan, M.P.: Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem. Eng. J. 283, 789–805 (2016). https://doi.org/10.1016/j.cej.2015.08.014

    Article  Google Scholar 

  95. Zhang, M., Yang, H., Liu, Y., Sun, X., Zhang, D., Xue, D.: Hydrophobic precipitation of carbonaceous spheres from fructose by a hydrothermal process. Carbon 50(6), 2155–2161 (2012). https://doi.org/10.1016/j.carbon.2012.01.024

    Article  Google Scholar 

  96. Falco, C., Baccile, N., Titirici, M.-M.: Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chem. 13(11), 3273–3281 (2011). https://doi.org/10.1039/c1gc15742f

    Article  Google Scholar 

  97. Zhong, R.Y., Liao, Y., Shu, R., Ma, L., Sels, B.F.: Vapor-phase assisted hydrothermal carbon from sucrose and its application in acid catalysis. Green Chem. 20(6), 1345–1353 (2018). https://doi.org/10.1039/C7GC02236K

    Article  Google Scholar 

  98. Sevilla, M., Fuertes, A.B.: The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47(9), 2281–2289 (2009). https://doi.org/10.1016/j.carbon.2009.04.026

    Article  Google Scholar 

  99. Simsir, H., Eltugral, N., Karagoz, S.: Hydrothermal carbonization for the preparation of hydrochars from glucose, cellulose, chitin, chitosan and wood chips via low-temperature and their characterization. Biores. Technol. 246, 82–87 (2017). https://doi.org/10.1016/j.biortech.2017.07.018

    Article  Google Scholar 

  100. Zhang, X., Wang, Y., Du, Y., Qing, M., Yu, F., Tian, Z.Q., Shen, P.K.: Highly active N, S co-doped hierarchical porous carbon nanospheres from green and template-free method for super capacitors and oxygen reduction reaction. Electrochim. Acta 318, 272–280 (2019). https://doi.org/10.1016/j.electacta.2019.06.081

    Article  Google Scholar 

  101. Yu, J., Luo, J.-D., Zhang, H., Zhang, Z., Wei, J., Yang, Z.: Renewable agaric-based hierarchically porous cocoon-like MnO/Carbon composites enable high-energy and high-rate Li-ion batteries. Electrochim. Acta 322, 134757 (2019). https://doi.org/10.1016/j.electacta.2019.134757

    Article  Google Scholar 

  102. Guo, M., Guo, J., Tong, F., Jia, D., Jia, W., Wu, J., Wang, L., Sun, Z.: Hierarchical porous carbon spheres constructed from coal as electrode materials for high performance supercapacitors. RSC Adv. 7(72), 45363–45368 (2017). https://doi.org/10.1039/C7RA08026C

    Article  Google Scholar 

  103. Song, Y., Li, W., Xu, Z., Ma, C., Liu, Y., Xu, M., Wu, X., Liu, S.: Hierarchical porous carbon spheres derived from larch sawdust via spray pyrolysis and soft-templating method for supercapacitors. Sn Appl. Sci. 1(1), 122 (2019). https://doi.org/10.1007/s42452-018-0132-6

    Article  Google Scholar 

  104. Derraik, J.G.: The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull. 44(9), 842–852 (2002). https://doi.org/10.1016/S0025-326X(02)00220-5

    Article  Google Scholar 

  105. Bejgarn, S., Macleod, M., Bogdal, C., Breitholtz, M.: Toxicity of leachate from weathering plastics: an exploratory screening study with Nitocra spinipes. Chemosphere 132, 114–119 (2015). https://doi.org/10.1016/j.chemosphere.2015.03.010

    Article  Google Scholar 

  106. He, P., Chen, L., Shao, L., Zhang, H., Lu, F.: Municipal solid waste (MSW) landfill: a source of microplastics?-Evidence of microplastics in landfill leachate. Water Res. 159, 38–45 (2019). https://doi.org/10.1016/j.watres.2019.04.060

    Article  Google Scholar 

  107. Gong, J., Michalkiewicz, B., Chen, X., Mijowska, E., Liu, J., Jiang, Z., Wen, X., Tang, T.: Sustainable conversion of mixed plastics into porous carbon nanosheets with high performances in uptake of carbon dioxide and storage of hydrogen. ACS Sustain. Chem. Eng. 2(12), 2837–2844 (2014). https://doi.org/10.1021/sc500603h

    Article  Google Scholar 

  108. Gong, J., Liu, J., Chen, X., Jiang, Z., Wen, X., Mijowska, E., Tang, T.: Converting real-world mixed waste plastics into porous carbon nanosheets with excellent performance in the adsorption of an organic dye from wastewater. J. Mater. Chem. A 3(1), 341–351 (2014). https://doi.org/10.1039/C4TA05118A

    Article  Google Scholar 

  109. Gong, J., Liu, J., Wen, X., Jiang, Z., Chen, X., Mijowska, E., Tang, T.: Upcycling waste polypropylene into graphene flakes on organically modified montmorillonite. Ind. Eng. Chem. Res. 53(11), 4173–4181 (2014). https://doi.org/10.1021/ie4043246

    Article  Google Scholar 

  110. Zhang, H., Zhou, X.L., Shao, L.M., Lu, F., He, P.J.: Hierarchical porous carbon spheres from low-density polyethylene for high-performance supercapacitors. ACS Sustain. Chem. Eng. 7(4), 3801–3810 (2019). https://doi.org/10.1021/acssuschemeng.8b04539

    Article  Google Scholar 

  111. Wang, X.W., Sun, G.Z., Routh, P., Kim, D.H., Huang, W., Chen, P.: Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev. 43(20), 7067–7098 (2014). https://doi.org/10.1039/c4cs00141a

    Article  Google Scholar 

  112. Sheng, Z.-H., Shao, L., Chen, J.-J., Bao, W.-J., Wang, F.-B., Xia, X.-H.: Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5(6), 4350–4358 (2011). https://doi.org/10.1021/nn103584t

    Article  Google Scholar 

  113. Oehzelt, M.: Nitrogen-doped graphene: efficient growth, structure, and electronic properties. Nano Lett. 11(12), 5401–5407 (2011). https://doi.org/10.1021/nl2031037

    Article  Google Scholar 

  114. Mao, X.X., Cao, Z.X., Yin, Y.H., Wang, Z.C., Dong, H.Y., Yang, S.T.: Direct synthesis of nitrogen and phosphorus co-doped hierarchical porous carbon networks with biological materials as efficient electrocatalysts for oxygen reduction reaction. Int. J. Hydrogen Energy 43(22), 10341–10350 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.100

    Article  Google Scholar 

  115. Li, J.T., Xiao, R., Li, M., Zhang, H.Y., Wu, S.L., Xia, C.L.: Template-synthesized hierarchical porous carbons from bio-oil with high performance for supercapacitor electrodes. Fuel Process. Technol. 192, 239–249 (2019). https://doi.org/10.1016/j.fuproc.2019.04.037

    Article  Google Scholar 

  116. Tian, J., Liu, Z., Li, Z., Wang, W., Zhang, H.: Hierarchical S-doped porous carbon derived from by-product lignin for high-performance supercapacitors. RSC Adv. 7(20), 12089–12097 (2017). https://doi.org/10.1039/c7ra00767a

    Article  Google Scholar 

  117. Glenis, S., Nelson, A.J., Labes, M.M.: Sulfur doped graphite prepared via arc discharge of carbon rods in the presence of thiophenes. J. Appl. Phys. 86(8), 4464 (1999). https://doi.org/10.1063/1.371387

    Article  Google Scholar 

  118. Yang, J.: Phosphorus-doped graphite layers with high electrocatalytic activity for the CO2 reduction in an alkaline medium. Angew. Chem. Int. Ed. 50(14), 3257–3261 (2011). https://doi.org/10.1002/anie.201006768

    Article  Google Scholar 

  119. Wang, D., Wang, Z., Li, Y., Dong, K., Shao, J., Luo, S., Liu, Y., Qi, X.: In situ double-template fabrication of boron-doped 3D hierarchical porous carbon network as anode materials for Li- and Na-ion batteries. Appl. Surf. Sci. 464, 422–428 (2019). https://doi.org/10.1016/j.apsusc.2018.09.035

    Article  Google Scholar 

  120. Shi, L.B., Wang, Y.P., Dong, H.K.: First-principle study of structural, electronic, vibrational and magnetic properties of HCN adsorbed graphene doped with Cr, Mn and Fe. Appl. Surf. Sci. 329, 330–336 (2015). https://doi.org/10.1016/j.apsusc.2014.12.172

    Article  Google Scholar 

  121. Mousavi, H., Moradian, R.: Nitrogen and boron doping effects on the electrical conductivity of graphene and nanotube. Solid State Sci. 13(8), 1459–1464 (2011). https://doi.org/10.1016/j.solidstatesciences.2011.03.008

    Article  Google Scholar 

  122. Zhang, Y., Mori, T., Ye, J., Antonietti, M.: Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc. 132(18), 6294–6295 (2010). https://doi.org/10.1021/ja101749y

    Article  Google Scholar 

  123. Tan, H., Liu, J., Huang, G., Qian, Y., Deng, Y., Chen, G.: Understanding the roles of sulfur doping for enhancing of hydrophilicity and electrochemical performance of N, S-codoped hierarchically porous carbon. ACS Appl. Energy Mater. 1(10), 5599–5608 (2018). https://doi.org/10.1021/acsaem.8b01131

    Article  Google Scholar 

  124. Chen, H., Wang, G., Chen, L., Dai, B., Yu, F.: Three-dimensional honeycomb-like porous carbon with both interconnected hierarchical porosity and nitrogen self-doping from cotton seed husk for supercapacitor electrod. Nanomaterials 8(6), 14 (2018). https://doi.org/10.3390/nano8060412

    Article  Google Scholar 

  125. Chung, D.Y., Son, Y.J., Yoo, J.M., Kang, J.S., Ahn, C.Y., Park, S., Sung, Y.E.: Coffee waste-derived hierarchical porous carbon as a highly active and durable electrocatalyst for electrochemical energy applications. ACS Appl. Mater. Interfaces. 9(47), 41303–41313 (2017). https://doi.org/10.1021/acsami.7b13799

    Article  Google Scholar 

  126. Shen, F., Zhu, L.F., Qi, X.H.: Nitrogen self-doped hierarchical porous carbon from myriophyllum aquaticum for supercapacitor electrode. Chemistryselect 3(40), 11350–11356 (2018). https://doi.org/10.1002/slct.201802400

    Article  Google Scholar 

  127. Zhou, Y., Song, Z., Hu, Q., Zheng, Q., Jiang, N., Xie, F., Jie, W., Xu, C., Lin, D.: Hierarchical nitrogen-doped porous carbon/carbon nanotube composites for high-performance supercapacitor. Superlattices Microstruct. 130, 50–60 (2019). https://doi.org/10.1016/j.spmi.2019.04.013

    Article  Google Scholar 

  128. Zhang, J.J., Fan, H.X., Dai, X.H., Yuan, S.J.: Digested sludge-derived three-dimensional hierarchical porous carbon for high-performance supercapacitor electrode. R. Soc. Open Sci. 5(4), 12 (2018). https://doi.org/10.1098/rsos.172456

    Article  Google Scholar 

  129. Demir, M., Saraswat, S.K., Gupta, R.B.: Hierarchical nitrogen-doped porous carbon derived from lecithin for high-performance supercapacitors. RSC Adv. 7(67), 42430–42442 (2017). https://doi.org/10.1039/c7ra07984b

    Article  Google Scholar 

  130. Guo, D., Ding, B., Hu, X., Wang, Y.H., Han, F.Q., Wu, X.L.: Synthesis of Boron and Nitrogen codoped porous carbon foam for high performance supercapacitors. ACS Sustain. Chem. Eng. 6(9), 11441–11449 (2018). https://doi.org/10.1021/acssuschemeng.8b01435

    Article  Google Scholar 

  131. Sun, Z.X., Li, K.B., Koh, S.W., Jiao, L.S.: Low-cost and scalable fabrication of hierarchically porous N-doped carbon for energy storage and conversion application. Chemistryselect 5(2), 533–537 (2020). https://doi.org/10.1002/slct.201903639

    Article  Google Scholar 

  132. Tian, P.F., Zang, J.B., Song, S.W., Zhou, S.Y., Gao, H.W., Xu, H.G., Tian, X.Q., Wang, Y.H.: In situ template reaction method to prepare three-dimensional interconnected Fe-N doped hierarchical porous carbon for efficient oxygen reduction reaction catalysts and high performance supercapacitors. J. Power Sources 448, 11 (2020). https://doi.org/10.1016/j.jpowsour.2019.227443

    Article  Google Scholar 

  133. Zhu, Y.D., Huang, Y., Wang, M.Y., Chen, C.: Nitrogen and phosphorus co-doped 3D hierarchical porous carbon network with highly-reversible performance in sodium storage. Ceram. Int. 45(18), 24500–24507 (2019). https://doi.org/10.1016/j.ceramint.2019.08.177

    Article  Google Scholar 

  134. Yu, Z.S., Liu, M.L., Guo, D.Y., Wang, J.H., Chen, X., Li, J., Jin, H.L., Yang, Z., Chen, X., Wang, S.: Radially Iinwardly aligned hierarchical porous carbon for ultra-long-life lithium-sulfur batteries. Angew. Chem. Int. Edn. 59(16), 6406–6411 (2020). https://doi.org/10.1002/anie.201914972

    Article  Google Scholar 

  135. Hu, Y., Tong, X., Zhuo, H., Zhong, L., Peng, X., Wang, S., Sun, R.: 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: an attractive carbon for high-performance supercapacitor electrodes and CO2 adsorption. RSC Adv. 6(19), 15788–15795 (2016). https://doi.org/10.1039/c6ra00822d

    Article  Google Scholar 

  136. Qi, F.L., Xia, Z.X., Wei, W., Sun, H., Wang, S.L., Sun, G.Q.: Nitrogen/sulfur co-doping assisted chemical activation for synthesis of hierarchical porous carbon as an efficient electrode material for supercapacitors. Electrochim. Acta 246, 59–67 (2017). https://doi.org/10.1016/j.electacta.2017.05.192

    Article  Google Scholar 

  137. Yi, J.N., Qing, Y., Wu, C.T., Zeng, Y.X., Wu, Y.Q., Lu, X.H., Tong, Y.X.: Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercapacitors. J. Power Sources 351, 130–137 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.036

    Article  Google Scholar 

  138. Liu, Y.X., Xiao, Z.C., Liu, Y.C., Fan, L.Z.: Biowaste-derived 3D honeycomb-like porous carbon with binary-heteroatom doping for high-performance flexible solid-state supercapacitors. J. Mater. Chem. A 6(1), 160–166 (2018). https://doi.org/10.1039/c7ta09055b

    Article  Google Scholar 

  139. Zhang, W., Yu, C.Y., Chang, L.B., Zhong, W.B., Yang, W.T.: Three-dimensional nitrogen-doped hierarchical porous carbon derived from cross-linked lignin derivatives for high performance supercapacitors. Electrochim. Acta 282, 642–652 (2018). https://doi.org/10.1016/j.electacta.2018.06.100

    Article  Google Scholar 

  140. Hall, P.J., Mirzaeian, M., Fletcher, S.I., Sillars, F.B., Rennie, A.J.R., Shitta-Bey, G.O., Wilson, G., Cruden, A., Carter, R.: Energy storage in electrochemical capacitors: Designing functional materials to improve performance. Energy Environ. Sci. 3(9), 1238–1251 (2010). https://doi.org/10.1039/c0ee00004c

    Article  Google Scholar 

  141. Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A.C., Ruoff, R.S., Pellegrini, V.: Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015). https://doi.org/10.1126/science.1246501

    Article  Google Scholar 

  142. Simon, P., Gogotsi, Y.: Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). https://doi.org/10.1038/nmat2297

    Article  Google Scholar 

  143. Dutta, S., Bhaumik, A., Wu, K.C.W.: Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ. Sci. 7(11), 3574–3592 (2014). https://doi.org/10.1039/c4ee01075b

    Article  Google Scholar 

  144. Mary, A.J.C., Nandhini, C., Bose, A.C.: Hierarchical porous structured N-doped activated carbon derived from Helianthus Annuus seed as a cathode material for hybrid supercapacitor device. Mater. Lett. (2019). https://doi.org/10.1016/j.matlet.2019.126617

    Article  Google Scholar 

  145. Chen, W., Luo, M., Liu, C., Hong, S., Wang, X., Yang, P., Zhou, X.: Fast microwave self-activation from chitosan hydrogel bead to hierarchical and O, N co-doped porous carbon at an air-free atmosphere for high-rate electrodes material. Carbohyd. Polym. 219, 229–239 (2019). https://doi.org/10.1016/j.carbpol.2019.05.033

    Article  Google Scholar 

  146. Liu, F., Wang, Z., Zhang, H., Jin, L., Chu, X., Gu, B., Huang, H., Yang, W.: Nitrogen, oxygen and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin. Carbon 149, 105–116 (2019). https://doi.org/10.1016/j.carbon.2019.04.023

    Article  Google Scholar 

  147. Wan, L., Li, X., Li, N., Xie, M., Du, C., Zhang, Y., Chen, J.: Multi-heteroatom-doped hierarchical porous carbon derived from chestnut shell with superior performance in supercapacitors. J. Alloy. Compd. 790, 760–771 (2019). https://doi.org/10.1016/j.jallcom.2019.03.241

    Article  Google Scholar 

  148. Han, B., Cheng, G., Wang, Y., Wang, X.: Structure and functionality design of novel carbon and faradaic electrode materials for high-performance capacitive deionization. Chem. Eng. J. 360, 364–384 (2019). https://doi.org/10.1016/j.cej.2018.11.236

    Article  Google Scholar 

  149. Yang, C.H., Nguyen, Q.D., Chen, T.H., Helal, A.S., Li, J., Chang, J.K.: Functional group-dependent supercapacitive and aging properties of activated carbon electrodes in organic electrolyte. ACS Sustain. Chem. Eng. 6(1), 1208–1214 (2017). https://doi.org/10.1021/acssuschemeng.7b03492

    Article  Google Scholar 

  150. Anderson, M.A., Cudero, A.L., Palma, J.: Capacitive deionization as an electrochemical means of saving energy and delivering clean water: comparison to present desalination practices: will it compete? Electrochim. Acta 55(12), 3845–3856 (2010). https://doi.org/10.1016/j.electacta.2010.02.012

    Article  Google Scholar 

  151. Burn, S., Hoang, M., Zarzo, D., Olewniak, F., Campos, E., Bolto, B., Barron, O.: Desalination techniques—a review of the opportunities for desalination in agriculture. Desalination 364, 2–16 (2015). https://doi.org/10.1016/j.desal.2015.01.041

    Article  Google Scholar 

  152. Zhao, S., Yan, T., Wang, H., Zhang, J., Shi, L., Zhang, D.: Creating 3D hierarchical carbon architectures with micro-, meso-, and macropores via a simple self-blowing strategy for a flow-through deionization capacitor. ACS Appl. Mater. Interfaces. 8(28), 18027–18035 (2016). https://doi.org/10.1021/acsami.6b03704

    Article  Google Scholar 

  153. Porada, S., Borchardt, L., Oschatz, M., Bryjak, M., Atchison, J.S., Keesman, K.J., Kaskel, S., Biesheuvel, P.M., Presser, V.: Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy Environ. Sci. 6(12), 3700–3712 (2013). https://doi.org/10.1039/c3ee42209g

    Article  Google Scholar 

  154. Chen, L.-F., Huang, Z.-H., Liang, H.-W., Gao, H.-L., Yu, S.-H.: Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv. Func. Mater. 24(32), 5104–5111 (2014). https://doi.org/10.1002/adfm.201400590

    Article  Google Scholar 

  155. Gabelich, C.J., Tran, T.D., Suffet, I.H.: Electrosorption of inorganic salts from aqueous solution using carbon aerogels. Environ. Sci. Technol. 36(13), 3010–3019 (2002). https://doi.org/10.1021/es0112745

    Article  Google Scholar 

  156. Seo, S.-J., Jeon, H., Lee, J.K., Kim, G.-Y., Park, D., Nojima, H., Lee, J., Moon, S.-H.: Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Res. 44(7), 2267–2275 (2010). https://doi.org/10.1016/j.watres.2009.10.020

    Article  Google Scholar 

  157. Hou, C.-H., Huang, C.-Y.: A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization. Desalination 314, 124–129 (2013). https://doi.org/10.1016/j.desal.2012.12.029

    Article  Google Scholar 

  158. Huang, Z., Lu, L., Cai, Z., Ren, Z.J.: Individual and competitive removal of heavy metals using capacitive deionization. J. Hazard. Mater. 302, 323–331 (2016). https://doi.org/10.1016/j.jhazmat.2015.09.064

    Article  Google Scholar 

  159. Fang, K., Gong, H., He, W., Peng, F., He, C., Wang, K.: Recovering ammonia from municipal wastewater by flow-electrode capacitive deionization. Chem. Eng. J. 348, 301–309 (2018). https://doi.org/10.1016/j.cej.2018.04.128

    Article  Google Scholar 

  160. Manthiram, A., Fu, Y., Chung, S.-H., Zu, C., Su, Y.-S.: Rechargeable lithium-sulfur batteries. Chem. Rev. 114(23), 11751–11787 (2014). https://doi.org/10.1021/cr500062v

    Article  Google Scholar 

  161. Sun, M.-H., Huang, S.-Z., Chen, L.-H., Li, Y., Yang, X.-Y., Yuan, Z.-Y., Su, B.-L.: Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 45(12), 3479–3563 (2016). https://doi.org/10.1039/c6cs00135a

    Article  Google Scholar 

  162. Wang, T., Zhu, J., Wei, Z., Yang, H., Ma, Z., Ma, R., Zhou, J., Yang, Y., Peng, L., Fei, H., Lu, B., Duan, X.: Bacteria-derived biological carbon building robust li-s batteries. Nano Lett. 19(7), 4384–4390 (2019). https://doi.org/10.1021/acs.nanolett.9b00996

    Article  Google Scholar 

  163. Yoo, J., Cho, S.-J., Jung, G.Y., Kim, S.H., Choi, K.-H., Kim, J.-H., Lee, C.K., Kwak, S.K., Lee, S.-Y.: COF-net on CNT-net as a molecularly designed, hierarchical porous chemical trap for polysulfides in lithium-sulfur batteries. Nano Lett. 16(5), 3292–3300 (2016). https://doi.org/10.1021/acs.nanolett.6b00870

    Article  Google Scholar 

  164. Xia, L., Song, Z.C., Zhou, L.X., Lin, D.M., Zheng, Q.J.: Nitrogen and oxygen dual-doped hierarchical porous carbon derived from rapeseed meal for high performance lithium-sulfur batteries. J. Solid State Chem. 270, 500–508 (2019). https://doi.org/10.1016/j.jssc.2018.12.031

    Article  Google Scholar 

  165. Ren, G.F., Li, S.Q., Fan, Z.X., Warzywoda, J., Fan, Z.Y.: Soybean-derived hierarchical porous carbon with large sulfur loading and sulfur content for high-performance lithium-sulfur batteries. J. Mater. Chem. A 4(42), 16507–16515 (2016). https://doi.org/10.1039/c6ta07446d

    Article  Google Scholar 

  166. Scott, V., Gilfillan, S., Markusson, N., Chalmers, H., Haszeldine, R.S.: Last chance for carbon capture and storage. Nat. Clim. Change 3(2), 105–111 (2013). https://doi.org/10.1038/nclimate1695

    Article  Google Scholar 

  167. Markewitz, P., Kuckshinrichs, W., Leitner, W., Linssen, J., Zapp, P., Bongartz, R., Schreiber, A., Mueller, T.E.: Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ. Sci. 5(6), 7281–7305 (2012). https://doi.org/10.1039/c2ee03403d

    Article  Google Scholar 

  168. Srinivas, G., Krungleviciute, V., Guo, Z.-X., Yildirim, T.: Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume. Energy Environ. Sci. 7(1), 335–342 (2014). https://doi.org/10.1039/c3ee42918k

    Article  Google Scholar 

  169. Chen, W., Wang, X., Hashisho, Z., Feizbakhshan, M., Shariaty, P., Niknaddaf, S., Zhou, X.: Template-free and fast one-step synthesis from enzymatic hydrolysis lignin to hierarchical porous carbon for CO2 capture. Microporous Mesoporous Mater. 280, 57–65 (2019). https://doi.org/10.1016/j.micromeso.2019.01.042

    Article  Google Scholar 

  170. Mane, S., Li, Y.-X., Liu, X.-Q., Sun, L.-B.: Development of high yielded Sn-doped porous carbons for selective CO2 capture. ACS Sustain. Chem. Eng. 7(12), 10383–10392 (2019). https://doi.org/10.1021/acssuschemeng.9b00462

    Article  Google Scholar 

  171. Ma, X., Li, L., Chen, R., Wang, C., Zhou, K., Li, H.: Doping of alkali metals in carbon frameworks for enhancing CO2 capture: a theoretical study. Fuel 236, 942–948 (2019). https://doi.org/10.1016/j.fuel.2018.08.166

    Article  Google Scholar 

  172. Ma, X., Li, L., Zeng, Z., Chen, R., Wang, C., Zhou, K., Li, H.: Experimental and theoretical demonstration of the relative effects of O-doping and N-doping in porous carbons for CO2 capture. Appl. Surf. Sci. 481, 1139–1147 (2019). https://doi.org/10.1016/j.apsusc.2019.03.162

    Article  Google Scholar 

  173. Sun, F., Liu, X., Gao, J., Pi, X., Wang, L., Qu, Z., Qin, Y.: Highlighting the role of nitrogen doping in enhancing CO2 uptake onto carbon surfaces: a combined experimental and computational analysis. J. Mater. Chem. A 4(47), 18248–18252 (2016). https://doi.org/10.1039/c6ta08262a

    Article  Google Scholar 

  174. Li, Z., Zhou, Y., Yan, W., Luo, L., Su, Z., Fan, M., Wang, S., Zhao, W.: A cost-effective monolithic hierarchical carbon cryogels with nitrogen doping and high-performance mechanical properties for CO2 capture. ACS Appl. Mater. Interfaces. (2020). https://doi.org/10.1021/acsami.0c04015

    Article  Google Scholar 

  175. Wei, H., Chen, H., Fu, N., Chen, J., Lan, G., Qian, W., Liu, Y., Lin, H., Han, S.: Excellent electrochemical properties and large CO2 capture of nitrogen-doped activated porous carbon synthesised from waste longan shells. Electrochim. Acta 231, 403–411 (2017). https://doi.org/10.1016/j.electacta.2017.01.194

    Article  Google Scholar 

  176. Wang, M., Fan, X., Zhang, L., Liu, J., Wang, B., Cheng, R., Li, M., Tian, J., Shi, J.: Probing the role of O-containing groups in CO2 adsorption of N-doped porous activated carbon. Nanoscale 9(44), 17593–17600 (2017). https://doi.org/10.1039/c7nr05977a

    Article  Google Scholar 

  177. Singh, J., Bhunia, H., Basu, S.: Synthesis of sulphur enriched carbon monoliths for dynamic CO2 capture. Chem. Eng. J. 374, 1–9 (2019). https://doi.org/10.1016/j.cej.2019.05.147

    Article  Google Scholar 

  178. Zhao, Y., Liu, X., Yao, K.X., Zhao, L., Han, Y.: Superior capture of CO2 achieved by introducing extra-framework cations into N-doped microporous carbon. Chem. Mater. 24(24), 4725–4734 (2012). https://doi.org/10.1021/cm303072n

    Article  Google Scholar 

  179. Sun, Y., Delucchi, M., Ogden, J.: The impact of widespread deployment of fuel cell vehicles on platinum demand and price. Int. J. Hydrogen Energy 36(17), 11116–11127 (2011). https://doi.org/10.1016/j.ijhydene.2011.05.157

    Article  Google Scholar 

  180. Li, Y., Wang, D., Xie, H., Zhang, C.: Electrocatalytic activity and stability of 3D ordered n-doped hierarchically porous carbon supported pt catalyst for methanol oxidation and oxygen reduction reactions. Chemistryselect 4(43), 12601–12607 (2019). https://doi.org/10.1002/slct.201903610

    Article  Google Scholar 

  181. Liu, H., Cao, Y., Wang, F., Huang, Y.: Nitrogen-doped hierarchical lamellar porous carbon synthesized from the fish scale as support material for platinum nanoparticle electrocatalyst toward the oxygen reduction reaction. ACS Appl. Mater. Interfaces. 6(2), 819–825 (2014). https://doi.org/10.1021/am403432h

    Article  Google Scholar 

  182. Maria Baena-Moncada, A., Coneo-Rodriguez, R., La Rosa-Toro, A., Pastor, E., Barbero, C., Angel Planes, G.: PtFe catalysts supported on hierarchical porous carbon toward oxygen reduction reaction in microbial fuel cells. J. Solid State Electrochem. 23(9), 2683–2693 (2019). https://doi.org/10.1007/s10008-019-04367-6

    Article  Google Scholar 

  183. Kaur, P., Verma, G., Sekhon, S.S.: Biomass derived hierarchical porous carbon materials as oxygen reduction reaction electrocatalysts in fuel cells. Prog. Mater Sci. 102, 1–71 (2019). https://doi.org/10.1016/j.pmatsci.2018.12.002

    Article  Google Scholar 

  184. Yan, J., Tang, Z., Li, B., Bi, D., Lai, Q., Liang, Y.: In situ ZnO-activated hierarchical porous carbon nanofibers as self-standing electrodes for flexible Zn-air batteries. ACS Sustain. Chem. Eng. 7(21), 17817–17824 (2019). https://doi.org/10.1021/acssuschemeng.9b04327

    Article  Google Scholar 

  185. Kumaresan, T.K., Gunasekaran, S.S., Elumalai, S.K., Masilamani, S.A., Raman, K., Rengarajan, B., Subashchandrabose, R.: Promising nature-based nitrogen-doped porous carbon nanomaterial derived from borassus flabellifer male inflorescence as superior metal-free electrocatalyst for oxygen reduction reaction. Int. J. Hydrogen Energy 44(47), 25918–25929 (2019). https://doi.org/10.1016/j.ijhydene.2019.08.044

    Article  Google Scholar 

  186. Borghei, M., Laocharoen, N., Kibena-Põldsepp, E., Johansson, L.-S., Campbell, J., Kauppinen, E., Tammeveski, K., Rojas, O.J.: Porous N, P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: alternative to Pt-C for alkaline fuel cells. Appl. Catal. B 204, 394–402 (2017). https://doi.org/10.1016/j.apcatb.2016.11.029

    Article  Google Scholar 

  187. Wang, Z., Jia, R., Zheng, J., Zhao, J., Li, L., Song, J., Zhu, Z.: Nitrogen-promoted self-assembly of N-doped carbon nanotubes and their intrinsic catalysis for oxygen reduction in fuel cells. ACS Nano 5(3), 1677–1684 (2011). https://doi.org/10.1021/nn1030127

    Article  Google Scholar 

  188. Guo, D., Shibuya, R., Akiba, C., Saji, S., Kondo, T., Nakamura, J.: Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351(6271), 361–365 (2016). https://doi.org/10.1126/science.aad0832

    Article  Google Scholar 

  189. Liang, H.-W., Zhuang, X., Bruller, S., Feng, X., Mullen, K.: Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nature Communications 5(1), 1–7 (2014). https://doi.org/10.1038/ncomms5973

    Article  Google Scholar 

  190. Lv, Q., Wang, N., Si, W., Hou, Z., Li, X., Wang, X., Zhao, F., Yang, Z., Zhang, Y., Huang, C.: Pyridinic nitrogen exclusively doped carbon materials as efficient oxygen reduction electrocatalysts for Zn-air batteries. Appl. Catal. B 261, 118234 (2020). https://doi.org/10.1016/j.apcatb.2019.118234

    Article  Google Scholar 

  191. Yu, L., Pan, X., Cao, X., Hu, P., Bao, X.: Oxygen reduction reaction mechanism on nitrogen-doped graphene: a density functional theory study. J. Catal. 282(1), 183–190 (2011). https://doi.org/10.1016/j.jcat.2011.06.015

    Article  Google Scholar 

  192. Xu, J., Xia, C., Li, M., Xiao, R.: Porous nitrogen-doped carbons as effective catalysts for oxygen reduction reaction synthesized from cellulose and polyamide. Chemelectrochem 6(22), 5735–5743 (2019). https://doi.org/10.1002/celc.201901763

    Article  Google Scholar 

  193. Contreras, E., Dominguez, D., Tiznado, H., Guerrero-Sanchez, J., Takeuchi, N., Alonso-Nunez, G., Contreras, O.E., Oropeza-Guzman, M.T., Romo-Herrera, J.M.: N-Doped carbon nanotubes enriched with graphitic nitrogen in a buckypaper configuration as efficient 3D electrodes for oxygen reduction to H2O2. Nanoscale 11(6), 2829–2839 (2019). https://doi.org/10.1039/c8nr08384c

    Article  Google Scholar 

Download references

Acknowledgement

The work is financially supported by National Key R&D Program of China (2018YFD1100600).

Funding

National Key R&D Program of China (2018YFD1100600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Zhang or Pin-Jing He.

Ethics declarations

Conflicts of interest

No conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, XL., Zhang, H., Shao, LM. et al. Preparation and Application of Hierarchical Porous Carbon Materials from Waste and Biomass: A Review. Waste Biomass Valor 12, 1699–1724 (2021). https://doi.org/10.1007/s12649-020-01109-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01109-y

Keywords

Navigation